# Obtain a transportation network from an osm file. # get osm file 方式1:OpenStreetMap Homepage # .osm.pbf下载地址 方式2:http://download.openstreetmap.fr/extracts/asia/china/ # get osm file 方式3:Geofabrik https://download.geofabrik.de/ # get osm file 方式4: BBBike(可支持多边形范围) https://extract.bbbike.org/ import osm2gmns as og import osm2gmns.settings as defaultsettings # pip install -i http://mirrors.aliyun.com/pypi/simple/ osm2gmns --trusted-host mirrors.aliyun.com # FromOSMFile # net = og.getNetFromOSMFile(r'D:/DataWorkspace/data/beijing.osm', # network_type=('auto',), link_type='all', # POIs=False, POI_sampling_ratio=1.0, # strict_mode=True, # offset='no', # min_nodes=1, # combine=False, # int_buffer=defaultsettings.default_int_buffer, # bbox=None, # default_lanes=False, # default_speed=False) # FromPBFFile net = og.getNetFromPBFFile(r'D:/DataWorkspace/data/beijing.osm.pbf', network_type=('auto',), link_type='all', POIs=False, POI_sampling_ratio=1.0, strict_mode=True, offset='no', min_nodes=1, combine=False, int_buffer=defaultsettings.default_int_buffer, bbox=None, default_lanes=False, default_speed=False) # Recommend using getNetFromPBFFile() for large networks # net = og.getNetFromPBFFile('***.osm.pbf') default_lanes_dict = {'motorway': 4, 'trunk': 3, 'primary': 3, 'secondary': 2, 'tertiary': 2, 'residential': 1, 'service': 1, 'cycleway':1, 'footway':1, 'track':1, 'unclassified': 1, 'connector': 2} default_speed_dict = {'motorway': 59, 'trunk': 39, 'primary': 39, 'secondary': 39, 'tertiary': 29, 'residential': 29, 'service': 29, 'cycleway':9, 'footway':4, 'track':29, 'unclassified': 29, 'connector':59} # 保存成CSV Output Networks to CSV og.outputNetToCSV(net, output_folder='netcsv', projection=False, enconding=None) # 合并交叉路口 Consolidate Intersections og.consolidateComplexIntersections(net) og.outputNetToCSV(net, output_folder='netcsv_csd', projection=False, enconding=None) # # 也可以先保存成csv,然后人工编辑,最后再合并 # net = og.getNetFromPBFFile(r'D:/DataWorkspace/data/beijing.osm.pbf') # og.outputNetToCSV(net, output_folder='', projection=False, enconding=None) # # check the main_node_id column in node.csv # net = og.getNetFromCSV(folder='', enconding=None) # og.consolidateComplexIntersections(net) # og.outputNetToCSV(net, output_folder='consolidated', projection=False, enconding=None) # # 连接POI # # Network with POIs # net = og.getNetFromPBFFile(r'D:/DataWorkspace/data/beijing.osm.pbf', # network_type=('auto',), link_type='all', # POIs=True, POI_sampling_ratio=1.0, # strict_mode=True, # offset='no', # min_nodes=1, # combine=False, # int_buffer=defaultsettings.default_int_buffer, # bbox=None, # default_lanes=False, # default_speed=False) # # Connect POIs with network # og.connectPOIWithNet(net) # Visualization # You can visualize generated networks using NeXTA or QGis. # NeXTA:https://github.com/xzhou99/NeXTA-GMNS OR https://github.com/asu-trans-ai-lab/DTALite
贴几张图吧 记录而已