zoukankan      html  css  js  c++  java
  • pytorch记录:seq2seq例子看看这torch怎么玩的

    https://blog.csdn.net/nockinonheavensdoor/article/details/82320580

    先看看简单例子:

    import torch
    import torch.autograd as autograd
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    
    torch.manual_seed(1)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • torch.tensor让list成为tensor:
    # Create a 3D tensor of size 2x2x2.
    T_data = [[[1., 2.], [3., 4.]],
              [[5., 6.], [7., 8.]]]
    T = torch.tensor(T_data)
    print(T)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 自动求导设requires_grad=True:
    # Computation Graphs and Automatic Differentiation
    x = torch.tensor([1., 2., 3], requires_grad=True)
    y = torch.tensor([4., 5., 6], requires_grad=True)
    z = x + y
    print(z)
    print(z.grad_fn)
    
    tensor([ 5.,  7.,  9.])
    <AddBackward1 object at 0x00000247781E0BE0>
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • detach()方法获取z的值,但是不能对获取后的值求导了。
    new_z = z.detach()
    print(new_z.grad_fn)
    
    None
    • 1
    • 2
    • 3
    • 4
    • 好了,重点来了

    Translation with a Sequence to Sequence Network and Attention

    from __future__ import unicode_literals, print_function, division
    from io import open
    import unicodedata
    import string
    import re
    import random
    
    import torch
    import torch.nn as nn
    from torch import optim
    import torch.nn.functional as F
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    准备数据:

    SOS_token = 0
    EOS_token = 1
    
    class lang:
        def __init__(self, name):
            self.name = name
            self.word2index = {}
            self.word2count = {}
            self.index2word = {0:'SOS', 1:'EOS'}
            self.n_words = 2 # Count SOS and EOS
    
        def addSentence(self, sentence):
            for word in sentence.split():
                self.addWord(word)
    
        def addWord(self, word):
            if word not in self.word2index:
                self.word2index[word] = self.n_words
                self.word2count[word] = 1
                self.index2word[self.n_words] = word
                self.n_words += 1
            else:
                self.word2count[word] += 1
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • Unicode字符转为ASCII,用小写字母表示一切,去掉标点符号:
    # Turn a Unicode string to plain ASCII, thanks to
    # http://stackoverflow.com/a/518232/2809427
    def unicodeToAscii(s):
        return ''.join(
            c for c in unicodedata.normalize('NFD', s)
            if unicodedata.category(c) != 'Mn'
        )
    
    # Lowercase,trim,remove non-letter characters
    #re.sub(pattern, repl, string, count=0, flags=0)
    def normalizeString(s):
        s = unicodeToAscii(s.lower().strip())
        # (re)  匹配括号内的表达式,也表示一个组
        # [...] 用来表示一组字符,单独列出:[amk] 匹配 'a','m'或'k'
        # 1...9   匹配第n个分组的内容。
        s = re.sub(r"([.!?])", r"1", s)
        # [^...]    不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。
        s = re.sub(r"[^a-zA-Z.!?]+",r" ", s)
        return s
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    继续:

    # 文件用的英语到其他语言,用reverse标志置换一对这样的数据。
    def readlangs(lang1, lang2, reverse= False):
        print("Reading lines...")
    
        #Read the file and split into lines
        lines = open('data/%s-%s.txt' % (lang1, lang2), encoding='utf-8').
        read().strip().split('
    ')
        # Split every line into pairs and normalize
        pairs = [[normalizeString(s) for s in l.split('	')] for l in lines]
    
        # Reverse pairs, make lang instances
        if reverse:
            pairs = [list(reversed(p)) for p in pairs]
            input_lang = lang(lang2)
            output_lang = lang(lang1)
        else:
            input_lang = lang(lang1)
            output_lang = lang(lang2)
    
        return input_lang, output_lang, pairs
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    过滤出部分样本:

    
    MAX_LENGTH = 10
    
    eng_prefixes = (
        "i am ", "i m ",
        "he is", "he s ",
        "she is", "she s",
        "you are", "you re ",
        "we are", "we re ",
        "they are", "they re "
    )
    
    def filterPair(p):
        return len(p[0].split(' ')) < MAX_LENGTH and 
        len(p[1].split(' ')) < MAX_LENGTH and 
        p[1].startswith(eng_prefixes)
    
    def filterPairs(pairs):
        return [ pair for pair in pairs if filterPair(pair)]
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • The full process for preparing the data is:

      • Read text file and split into lines, split lines into pairs
      • Normalize text, filter by length and content
      • Make word lists from sentences in pairs
    def prepareData(lang1, lang2, reverse= False):
        input_lang, output_lang, pairs = readlangs(lang1,lang2,reverse)
        print("Read %s sentence pairs " % len(pairs))
        pairs = filterPairs(pairs)
        print("Trimmed to %s sentence pairs " % len(pairs))
        print("Counting words...")
        for pair in pairs:
            input_lang.addSentence(pair[0])
            output_lang.addSentence(pair[1])
        print("Counted word:")
        print(input_lang.name,input_lang.n_words)
        print(output_lang.name, output_lang.n_words)
        return input_lang, output_lang, pairs
    
    input_lang, output_lang, pairs = prepareData('eng','fra',True)
    print(random.choice(pairs))
    
    
    Reading lines...
    Read 135842 sentence pairs 
    Trimmed to 11739 sentence pairs 
    Counting words...
    Counted word:
    fra 5911
    eng 3965
    ['elle chante les dernieres chansons populaires.', 'she is singing the latest popular songs.']
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27

    The Seq2Seq Model

    • 允许句子到句子有不同长度和顺序。

    The Encoder :

    #编码器
    class  EncoderRNN(nn.Module):
        def __init__(self, input_size, hidden_size):
            super(EncoderRNN, self).__init__()
            self.hidden_size = hidden_size
    
            # 指定embedding矩阵W的大小维度
            self.embedding = nn.Embedding(input_size, hidden_size)
            # 指定gru单元的大小
            self.gru = nn.GRU(hidden_size, hidden_size)
    
        def forward(self, input, hidden):
            # 扁平化嵌入矩阵
            embedded = self.embedding(input).view(1, 1, -1)
            print("embedded shape:",embedded.shape)
            output = embedded
    
            output, hidden = self.gru(output, hidden)
            return output, hidden
    
        #全0初始化隐层
        def initHidden(self):
            # 这个初始化维度可以
            return torch.zeros(1, 1, self.hidden_size, device=device)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    这里的self.gru = nn.GRU(hidden_size, hidden_size)中,hidden_size在后面设置为256

    print("embedded shape:",embedded.shape)的结果是: 
    embedded shape: torch.Size([1, 1, 256])

    所以self.gru(output, hidden)中传递的第一个维度是[1,1,256],被压缩为这样的。


    nn.GRU源码:


    The Decoder:

    • seq2seq解码器的简化版:指利用encoder的最后输出,称为context vector,
    • context vector 作为decoder的初始化隐层状态值 
    class DecoderRNN(nn.Module):
        def self__init__(self, hidden_size, output_size):
            super(DecoderRNN, self).__init__()
            self.hidden_size = hidden_size
    
            self.embedding = nn.Embedding(output_size,hidden_size)
            self.gru = nn.GRU(hidden_size, hidden_size)
            self.out = nn.Linear(hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=1)
    
        def forward(self, input, hidden):
            output = self.embedding(input).view(1, 1, -1)
             # 1行X列的shape做relu
            output = F.relu(output)
            output, hidden = self.gru(output, hidden)
            #output[0]应该是shape为(*,*)的矩阵
            output = self.softmax(self.out(output[0]))
            return output, hidden
        def initHidden(self):
            return torch.zeros(1, 1, self.hidden_size, device=device)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    Attention Decoder:

    • 简单的解码器的缺点:把整个句子做编码成一个向量,信息容易丢失,翻译一个词的时候需要追溯之前很长的距离,一般翻译的对应性也没有利用,如翻译第一个词,对应大概率在原句子的第一个位置的信息。
    • encoder的输出向量 会乘以一个attention weights,这个权值用NN来计算完成attn,使用解码器的输入和隐藏状态作为输入。。
    • 因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出)因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出) 
    class AttnDecoderRNN(nn.Module):
        def __init__(self, hidden_size, output_size, 
                    dropout_p = 0.1, max_length=MAX_LENGTH):
            super(AttnDecoderRNN,self).__init__()
            self.hidden_size = hidden_size
            self.output_size = output_size
            self.dropout_p = dropout_p
            self.max_length = max_length
    
            self.embedding = nn.Embedding(self.output_size, self.hidden_size)
            self.attn = nn.Linear(self.hidden_size * 2, self.max_length)
            self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
            self.dropout = nn.Dropout(self.dropout_p)
            #输入向量的维度是10,隐层的长度是10,默认是一层GRU
            self.gru = nn.GRU(self.hidden_size, self.hidden_size)
            self.out = nn.Linear(self.hidden_size, self.output_size)
    
        def forward(self, input, hidden, encoder_outputs):
            embedded = self.embedding(input).view(1,1,-1)
            embedded = self.dropout(embedded)
    
            attn_weights = F.softmax(
                self.attn(torch.cat((embedded[0],hidden[0]),1)),dim=1)
            # unsqueeze:在指定的轴上多增加一个维度
            attn_applied = torch.bmm(attn_weights.unsqueeze(0),
                                    encoder_outputs.unsqueeze(0))
    
            output = torch.cat((embedded[0],attn_applied[0]),1)
            output = self.attn_combine(output).unsqueeze(0)
    
            output = F.relu(output)
            output, hidden = self.gru(output, hidden)
            #print("output shape:",output.shape)
            #print("output[0]:",output[0])
            output = F.log_softmax(self.out(output[0]),dim=1)
            return output , hidden, attn_weights
    
        def initHidden(self):
            return torch.zeros(1, 1, self.hidden_size, device=device)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40

    继续准备数据:

    def indexesFromSentence(lang, sentence):
        return [lang.word2index[word] for word in sentence.split(' ')]
    
    
    def tensorFromSentence(lang, sentence):
        indexes = indexesFromSentence(lang, sentence)
        indexes.append(EOS_token)
        return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)
    
    
    def tensorsFromPair(pair):
        input_tensor = tensorFromSentence(input_lang, pair[0])
        target_tensor = tensorFromSentence(output_lang, pair[1])
        return (input_tensor, target_tensor)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    训练模型

    • 解码器的第一个输入是SOS符,并且把编码器最后的隐层状态作为解码器的第一隐层状态。
    • “Teacher forcing”指用真实样本数据作为下一步的输入,而不是解码器猜测的数据作为下一步输入。
    teacher_forcing_ratio = 0.5
    
    
    def train(input_tensor, output_tensor, encoder, decoder, encoder_optimizer,
              decoder_optimizer, criterion, max_length=MAX_LENGTH):
        # 这的隐层大小封装在encoder中,然后拿过来在train的时候初始化隐层的大小
        encoder_hidden = encoder.initHidden()
        encoder_optimizer.zero_grad()
        decoder_optimizer.zero_grad()
        # 第一维度的大小即输入长度
        input_length = input_tensor.size(0)
        output_length = output_tensor.size(0)
    
        encoder_outputs = torch.zeros(max_length, encoder.hidden_size,device=device)
    
        loss = 0
    
        for ei in range(input_length):
            encoder_output, encoder_hidden = encoder(input_tensor[ei],encoder_hidden)
            # [0,0]选取最大数组的第一个元素组里的第一个
            encoder_outputs[ei] = encoder_output[0 , 0]
            if ei == 0 :
                print("encoder_output[0, 0] shape: ",encoder_outputs[ei].shape)
    
            decoder_input = torch.tensor([[SOS_token]], device=device)
            decoder_hidden = encoder_output
            # niubi 
            use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
    
            if use_teacher_forcing:
                # Teacher forcing: Feed the target as the next input
                for di in range(output_length):
                    decoder_ouput,decoder_hidden,decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs)
                    loss = loss + criterion(decoder_ouput, output_tensor[di])
                    decoder_input = output_tensor[di] # Teacher forcing
            else:
                for di in range(output_length):
                    decoder_output,decoder_hidden,decoder_attention=decoder(decoder_input, decoder_hidden, encoder_outputs)
                    topv ,topi = decoder_output.topk(1)
                    decoder_input=  topi.squeeze().detach() # # detach from history as input
    
    
                    loss = loss + criterion(decoder_output, output_tensor[di])
                    if decoder_input.item() == EOS_token:
                        break  
        loss.backward()
        encoder_optimizer.step()
        decoder_optimizer.step()
        return loss.item() / target_length
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49

    好了,模型准备结束:

    import time
    import math
    
    def asMinutes(s):
        m = math.floors(s / 60)
        s -= m * 60
        return "%s(- %s)" % (asMinutes(s), asMinutes(rs))
    
    
    def timeSince(since, percent):
        now = time.time()
        s = now - since
        es = s / (percent)
        rs = es - s
        return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    训练过程:

    def trainIters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.01):
        start = time.time()
        plot_losses = []
        print_loss_total = 0  # Reset every print_every
        plot_loss_total = 0  # Reset every plot_every
    
        encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
        decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
        training_pairs = [tensorsFromPair(random.choice(pairs))
                          for i in range(n_iters)]
        criterion = nn.NLLLoss()
    
        for iter in range(1, n_iters + 1):
            training_pair = training_pairs[iter - 1]
            input_tensor = training_pair[0]
            target_tensor = training_pair[1]
    
            loss = train(input_tensor, target_tensor, encoder,
                         decoder, encoder_optimizer, decoder_optimizer, criterion)
            print_loss_total = loss + print_loss_total
            plot_loss_total = loss + plot_loss_total 
    
            if iter % print_every == 0:
                print_loss_avg = print_loss_total / print_every
                print_loss_total = 0
                print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),
                                             iter, iter / n_iters * 100, print_loss_avg))
    
            if iter % plot_every == 0:
                plot_loss_avg = plot_loss_total / plot_every
                plot_losses.append(plot_loss_avg)
                plot_loss_total = 0
    
        showPlot(plot_losses)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34

    画图的这段:

    import matplotlib.pyplot as plt
    plt.switch_backend('agg')
    import matplotlib.ticker as ticker
    import numpy as np
    
    
    def showPlot(points):
        plt.figure()
        fig, ax = plt.subplots()
        # this locator puts ticks at regular intervals
        loc = ticker.MultipleLocator(base=0.2)
        ax.yaxis.set_major_locator(loc)
        plt.plot(points)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    验证的代码:

    def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):
        with torch.no_grad():
            input_tensor = tensorFromSentence(input_lang, sentence)
            input_length = input_tensor.size()[0]
            encoder_hidden = encoder.initHidden()
    
            encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
    
            for ei in range(input_length):
                encoder_output, encoder_hidden = encoder(input_tensor[ei],
                                                         encoder_hidden)
                encoder_outputs[ei] += encoder_output[0, 0]
    
            decoder_input = torch.tensor([[SOS_token]], device=device)  # SOS
    
            decoder_hidden = encoder_hidden
    
            decoded_words = []
            decoder_attentions = torch.zeros(max_length, max_length)
    
            for di in range(max_length):
                decoder_output, decoder_hidden, decoder_attention = decoder(
                    decoder_input, decoder_hidden, encoder_outputs)
                decoder_attentions[di] = decoder_attention.data
                topv, topi = decoder_output.data.topk(1)
                if topi.item() == EOS_token:
                    decoded_words.append('<EOS>')
                    break
                else:
                    decoded_words.append(output_lang.index2word[topi.item()])
    
                decoder_input = topi.squeeze().detach()
    
            return decoded_words, decoder_attentions[:di + 1]
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    def evaluateRandomly(encoder, decoder, n=10):
        for i in range(n):
            pair = random.choice(pairs)
            print('>', pair[0])
            print('=', pair[1])
            output_words, attentions = evaluate(encoder, decoder, pair[0])
            output_sentence = ' '.join(output_words)
            print('<', output_sentence)
            print('')
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    最后一步:

    hidden_size = 256
    encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
    attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device)
    
    trainIters(encoder1, attn_decoder1, 75000, print_every=5000)

    先看看简单例子:

    import torch
    import torch.autograd as autograd
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    
    torch.manual_seed(1)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • torch.tensor让list成为tensor:
    # Create a 3D tensor of size 2x2x2.
    T_data = [[[1., 2.], [3., 4.]],
              [[5., 6.], [7., 8.]]]
    T = torch.tensor(T_data)
    print(T)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 自动求导设requires_grad=True:
    # Computation Graphs and Automatic Differentiation
    x = torch.tensor([1., 2., 3], requires_grad=True)
    y = torch.tensor([4., 5., 6], requires_grad=True)
    z = x + y
    print(z)
    print(z.grad_fn)
    
    tensor([ 5.,  7.,  9.])
    <AddBackward1 object at 0x00000247781E0BE0>
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • detach()方法获取z的值,但是不能对获取后的值求导了。
    new_z = z.detach()
    print(new_z.grad_fn)
    
    None
    • 1
    • 2
    • 3
    • 4
    • 好了,重点来了

    Translation with a Sequence to Sequence Network and Attention

    from __future__ import unicode_literals, print_function, division
    from io import open
    import unicodedata
    import string
    import re
    import random
    
    import torch
    import torch.nn as nn
    from torch import optim
    import torch.nn.functional as F
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    准备数据:

    SOS_token = 0
    EOS_token = 1
    
    class lang:
        def __init__(self, name):
            self.name = name
            self.word2index = {}
            self.word2count = {}
            self.index2word = {0:'SOS', 1:'EOS'}
            self.n_words = 2 # Count SOS and EOS
    
        def addSentence(self, sentence):
            for word in sentence.split():
                self.addWord(word)
    
        def addWord(self, word):
            if word not in self.word2index:
                self.word2index[word] = self.n_words
                self.word2count[word] = 1
                self.index2word[self.n_words] = word
                self.n_words += 1
            else:
                self.word2count[word] += 1
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • Unicode字符转为ASCII,用小写字母表示一切,去掉标点符号:
    # Turn a Unicode string to plain ASCII, thanks to
    # http://stackoverflow.com/a/518232/2809427
    def unicodeToAscii(s):
        return ''.join(
            c for c in unicodedata.normalize('NFD', s)
            if unicodedata.category(c) != 'Mn'
        )
    
    # Lowercase,trim,remove non-letter characters
    #re.sub(pattern, repl, string, count=0, flags=0)
    def normalizeString(s):
        s = unicodeToAscii(s.lower().strip())
        # (re)  匹配括号内的表达式,也表示一个组
        # [...] 用来表示一组字符,单独列出:[amk] 匹配 'a','m'或'k'
        # 1...9   匹配第n个分组的内容。
        s = re.sub(r"([.!?])", r"1", s)
        # [^...]    不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。
        s = re.sub(r"[^a-zA-Z.!?]+",r" ", s)
        return s
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    继续:

    # 文件用的英语到其他语言,用reverse标志置换一对这样的数据。
    def readlangs(lang1, lang2, reverse= False):
        print("Reading lines...")
    
        #Read the file and split into lines
        lines = open('data/%s-%s.txt' % (lang1, lang2), encoding='utf-8').
        read().strip().split('
    ')
        # Split every line into pairs and normalize
        pairs = [[normalizeString(s) for s in l.split('	')] for l in lines]
    
        # Reverse pairs, make lang instances
        if reverse:
            pairs = [list(reversed(p)) for p in pairs]
            input_lang = lang(lang2)
            output_lang = lang(lang1)
        else:
            input_lang = lang(lang1)
            output_lang = lang(lang2)
    
        return input_lang, output_lang, pairs
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    过滤出部分样本:

    
    MAX_LENGTH = 10
    
    eng_prefixes = (
        "i am ", "i m ",
        "he is", "he s ",
        "she is", "she s",
        "you are", "you re ",
        "we are", "we re ",
        "they are", "they re "
    )
    
    def filterPair(p):
        return len(p[0].split(' ')) < MAX_LENGTH and 
        len(p[1].split(' ')) < MAX_LENGTH and 
        p[1].startswith(eng_prefixes)
    
    def filterPairs(pairs):
        return [ pair for pair in pairs if filterPair(pair)]
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • The full process for preparing the data is:

      • Read text file and split into lines, split lines into pairs
      • Normalize text, filter by length and content
      • Make word lists from sentences in pairs
    def prepareData(lang1, lang2, reverse= False):
        input_lang, output_lang, pairs = readlangs(lang1,lang2,reverse)
        print("Read %s sentence pairs " % len(pairs))
        pairs = filterPairs(pairs)
        print("Trimmed to %s sentence pairs " % len(pairs))
        print("Counting words...")
        for pair in pairs:
            input_lang.addSentence(pair[0])
            output_lang.addSentence(pair[1])
        print("Counted word:")
        print(input_lang.name,input_lang.n_words)
        print(output_lang.name, output_lang.n_words)
        return input_lang, output_lang, pairs
    
    input_lang, output_lang, pairs = prepareData('eng','fra',True)
    print(random.choice(pairs))
    
    
    Reading lines...
    Read 135842 sentence pairs 
    Trimmed to 11739 sentence pairs 
    Counting words...
    Counted word:
    fra 5911
    eng 3965
    ['elle chante les dernieres chansons populaires.', 'she is singing the latest popular songs.']
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27

    The Seq2Seq Model

    • 允许句子到句子有不同长度和顺序。

    The Encoder :

    #编码器
    class  EncoderRNN(nn.Module):
        def __init__(self, input_size, hidden_size):
            super(EncoderRNN, self).__init__()
            self.hidden_size = hidden_size
    
            # 指定embedding矩阵W的大小维度
            self.embedding = nn.Embedding(input_size, hidden_size)
            # 指定gru单元的大小
            self.gru = nn.GRU(hidden_size, hidden_size)
    
        def forward(self, input, hidden):
            # 扁平化嵌入矩阵
            embedded = self.embedding(input).view(1, 1, -1)
            print("embedded shape:",embedded.shape)
            output = embedded
    
            output, hidden = self.gru(output, hidden)
            return output, hidden
    
        #全0初始化隐层
        def initHidden(self):
            # 这个初始化维度可以
            return torch.zeros(1, 1, self.hidden_size, device=device)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    这里的self.gru = nn.GRU(hidden_size, hidden_size)中,hidden_size在后面设置为256

    print("embedded shape:",embedded.shape)的结果是: 
    embedded shape: torch.Size([1, 1, 256])

    所以self.gru(output, hidden)中传递的第一个维度是[1,1,256],被压缩为这样的。


    nn.GRU源码:


    The Decoder:

    • seq2seq解码器的简化版:指利用encoder的最后输出,称为context vector,
    • context vector 作为decoder的初始化隐层状态值 
    class DecoderRNN(nn.Module):
        def self__init__(self, hidden_size, output_size):
            super(DecoderRNN, self).__init__()
            self.hidden_size = hidden_size
    
            self.embedding = nn.Embedding(output_size,hidden_size)
            self.gru = nn.GRU(hidden_size, hidden_size)
            self.out = nn.Linear(hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=1)
    
        def forward(self, input, hidden):
            output = self.embedding(input).view(1, 1, -1)
             # 1行X列的shape做relu
            output = F.relu(output)
            output, hidden = self.gru(output, hidden)
            #output[0]应该是shape为(*,*)的矩阵
            output = self.softmax(self.out(output[0]))
            return output, hidden
        def initHidden(self):
            return torch.zeros(1, 1, self.hidden_size, device=device)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    Attention Decoder:

    • 简单的解码器的缺点:把整个句子做编码成一个向量,信息容易丢失,翻译一个词的时候需要追溯之前很长的距离,一般翻译的对应性也没有利用,如翻译第一个词,对应大概率在原句子的第一个位置的信息。
    • encoder的输出向量 会乘以一个attention weights,这个权值用NN来计算完成attn,使用解码器的输入和隐藏状态作为输入。。
    • 因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出)因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出) 
    class AttnDecoderRNN(nn.Module):
        def __init__(self, hidden_size, output_size, 
                    dropout_p = 0.1, max_length=MAX_LENGTH):
            super(AttnDecoderRNN,self).__init__()
            self.hidden_size = hidden_size
            self.output_size = output_size
            self.dropout_p = dropout_p
            self.max_length = max_length
    
            self.embedding = nn.Embedding(self.output_size, self.hidden_size)
            self.attn = nn.Linear(self.hidden_size * 2, self.max_length)
            self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
            self.dropout = nn.Dropout(self.dropout_p)
            #输入向量的维度是10,隐层的长度是10,默认是一层GRU
            self.gru = nn.GRU(self.hidden_size, self.hidden_size)
            self.out = nn.Linear(self.hidden_size, self.output_size)
    
        def forward(self, input, hidden, encoder_outputs):
            embedded = self.embedding(input).view(1,1,-1)
            embedded = self.dropout(embedded)
    
            attn_weights = F.softmax(
                self.attn(torch.cat((embedded[0],hidden[0]),1)),dim=1)
            # unsqueeze:在指定的轴上多增加一个维度
            attn_applied = torch.bmm(attn_weights.unsqueeze(0),
                                    encoder_outputs.unsqueeze(0))
    
            output = torch.cat((embedded[0],attn_applied[0]),1)
            output = self.attn_combine(output).unsqueeze(0)
    
            output = F.relu(output)
            output, hidden = self.gru(output, hidden)
            #print("output shape:",output.shape)
            #print("output[0]:",output[0])
            output = F.log_softmax(self.out(output[0]),dim=1)
            return output , hidden, attn_weights
    
        def initHidden(self):
            return torch.zeros(1, 1, self.hidden_size, device=device)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40

    继续准备数据:

    def indexesFromSentence(lang, sentence):
        return [lang.word2index[word] for word in sentence.split(' ')]
    
    
    def tensorFromSentence(lang, sentence):
        indexes = indexesFromSentence(lang, sentence)
        indexes.append(EOS_token)
        return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)
    
    
    def tensorsFromPair(pair):
        input_tensor = tensorFromSentence(input_lang, pair[0])
        target_tensor = tensorFromSentence(output_lang, pair[1])
        return (input_tensor, target_tensor)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    训练模型

    • 解码器的第一个输入是SOS符,并且把编码器最后的隐层状态作为解码器的第一隐层状态。
    • “Teacher forcing”指用真实样本数据作为下一步的输入,而不是解码器猜测的数据作为下一步输入。
    teacher_forcing_ratio = 0.5
    
    
    def train(input_tensor, output_tensor, encoder, decoder, encoder_optimizer,
              decoder_optimizer, criterion, max_length=MAX_LENGTH):
        # 这的隐层大小封装在encoder中,然后拿过来在train的时候初始化隐层的大小
        encoder_hidden = encoder.initHidden()
        encoder_optimizer.zero_grad()
        decoder_optimizer.zero_grad()
        # 第一维度的大小即输入长度
        input_length = input_tensor.size(0)
        output_length = output_tensor.size(0)
    
        encoder_outputs = torch.zeros(max_length, encoder.hidden_size,device=device)
    
        loss = 0
    
        for ei in range(input_length):
            encoder_output, encoder_hidden = encoder(input_tensor[ei],encoder_hidden)
            # [0,0]选取最大数组的第一个元素组里的第一个
            encoder_outputs[ei] = encoder_output[0 , 0]
            if ei == 0 :
                print("encoder_output[0, 0] shape: ",encoder_outputs[ei].shape)
    
            decoder_input = torch.tensor([[SOS_token]], device=device)
            decoder_hidden = encoder_output
            # niubi 
            use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
    
            if use_teacher_forcing:
                # Teacher forcing: Feed the target as the next input
                for di in range(output_length):
                    decoder_ouput,decoder_hidden,decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs)
                    loss = loss + criterion(decoder_ouput, output_tensor[di])
                    decoder_input = output_tensor[di] # Teacher forcing
            else:
                for di in range(output_length):
                    decoder_output,decoder_hidden,decoder_attention=decoder(decoder_input, decoder_hidden, encoder_outputs)
                    topv ,topi = decoder_output.topk(1)
                    decoder_input=  topi.squeeze().detach() # # detach from history as input
    
    
                    loss = loss + criterion(decoder_output, output_tensor[di])
                    if decoder_input.item() == EOS_token:
                        break  
        loss.backward()
        encoder_optimizer.step()
        decoder_optimizer.step()
        return loss.item() / target_length
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49

    好了,模型准备结束:

    import time
    import math
    
    def asMinutes(s):
        m = math.floors(s / 60)
        s -= m * 60
        return "%s(- %s)" % (asMinutes(s), asMinutes(rs))
    
    
    def timeSince(since, percent):
        now = time.time()
        s = now - since
        es = s / (percent)
        rs = es - s
        return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    训练过程:

    def trainIters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.01):
        start = time.time()
        plot_losses = []
        print_loss_total = 0  # Reset every print_every
        plot_loss_total = 0  # Reset every plot_every
    
        encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
        decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
        training_pairs = [tensorsFromPair(random.choice(pairs))
                          for i in range(n_iters)]
        criterion = nn.NLLLoss()
    
        for iter in range(1, n_iters + 1):
            training_pair = training_pairs[iter - 1]
            input_tensor = training_pair[0]
            target_tensor = training_pair[1]
    
            loss = train(input_tensor, target_tensor, encoder,
                         decoder, encoder_optimizer, decoder_optimizer, criterion)
            print_loss_total = loss + print_loss_total
            plot_loss_total = loss + plot_loss_total 
    
            if iter % print_every == 0:
                print_loss_avg = print_loss_total / print_every
                print_loss_total = 0
                print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),
                                             iter, iter / n_iters * 100, print_loss_avg))
    
            if iter % plot_every == 0:
                plot_loss_avg = plot_loss_total / plot_every
                plot_losses.append(plot_loss_avg)
                plot_loss_total = 0
    
        showPlot(plot_losses)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34

    画图的这段:

    import matplotlib.pyplot as plt
    plt.switch_backend('agg')
    import matplotlib.ticker as ticker
    import numpy as np
    
    
    def showPlot(points):
        plt.figure()
        fig, ax = plt.subplots()
        # this locator puts ticks at regular intervals
        loc = ticker.MultipleLocator(base=0.2)
        ax.yaxis.set_major_locator(loc)
        plt.plot(points)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    验证的代码:

    def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):
        with torch.no_grad():
            input_tensor = tensorFromSentence(input_lang, sentence)
            input_length = input_tensor.size()[0]
            encoder_hidden = encoder.initHidden()
    
            encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
    
            for ei in range(input_length):
                encoder_output, encoder_hidden = encoder(input_tensor[ei],
                                                         encoder_hidden)
                encoder_outputs[ei] += encoder_output[0, 0]
    
            decoder_input = torch.tensor([[SOS_token]], device=device)  # SOS
    
            decoder_hidden = encoder_hidden
    
            decoded_words = []
            decoder_attentions = torch.zeros(max_length, max_length)
    
            for di in range(max_length):
                decoder_output, decoder_hidden, decoder_attention = decoder(
                    decoder_input, decoder_hidden, encoder_outputs)
                decoder_attentions[di] = decoder_attention.data
                topv, topi = decoder_output.data.topk(1)
                if topi.item() == EOS_token:
                    decoded_words.append('<EOS>')
                    break
                else:
                    decoded_words.append(output_lang.index2word[topi.item()])
    
                decoder_input = topi.squeeze().detach()
    
            return decoded_words, decoder_attentions[:di + 1]
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    def evaluateRandomly(encoder, decoder, n=10):
        for i in range(n):
            pair = random.choice(pairs)
            print('>', pair[0])
            print('=', pair[1])
            output_words, attentions = evaluate(encoder, decoder, pair[0])
            output_sentence = ' '.join(output_words)
            print('<', output_sentence)
            print('')
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    最后一步:

    hidden_size = 256
    encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
    attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device)
    
    trainIters(encoder1, attn_decoder1, 75000, print_every=5000)
  • 相关阅读:
    Java并发编程:CountDownLatch、CyclicBarrier和Semaphore (总结)
    Java线程面试题 Top 50 (个人总结)(转)
    rabbitMQ windows 安装 入门(转)
    Java并发编程:volatile关键字解析(学习总结-海子)
    关于Sychronized和volatile自己总结的一点点理解(草稿)
    FWORK-数据存储篇 -- 范式与反模式 (学习和理解)
    Synchronized的原理及自旋锁,偏向锁,轻量级锁,重量级锁的区别(摘抄和理解)
    vcfc之zk+postsql+keystore(cassandra)框架分析
    CAP理论-解析
    java多线程通信 例子
  • 原文地址:https://www.cnblogs.com/jfdwd/p/11052581.html
Copyright © 2011-2022 走看看