zoukankan      html  css  js  c++  java
  • 什么是一阶矩和二阶矩?

    期望的公式扩展

    一阶矩就是期望值,换句话说就是平均数(离散随机变量很好理解,连续的可以类比一下)。举例:xy坐标系中,x取大于零的整数,y1, y2, ...,yn 对应x=1, 2,..., n的值,现在我要对y求期望,就是所有y累加除以n,也就是y的均值。

    此时y的均值我可以在坐标系中画一条线,我会发现所有的点都在这条线的两边。如果是中心矩我就会用每个值减去均值z=yn-y均作为一个新的序列z1, z2, ..., zn,再对z求期望,这时我会发现均值为零(即在坐标轴y上)。一阶矩只有一阶非中心矩,因为一阶中心矩永远等于零。

    二阶(非中心)矩就是对变量的平方求期望,二阶中心矩就是对随机变量与均值(期望)的差的平方求期望。为什么要用平方,因为如果序列中有负数就会产生较大波动,而平方运算就好像对序列添加了绝对值,这样更能体现偏离均值的范围。

    向左转|向右转

    扩展资料:

    在数理统计学中有一类数字特征称为矩。

    原点矩:令k为正整数(或为0),a为任何实数,X为随机变量,则期望值 

    向左转|向右转

     

    叫做随机变量X对a的k阶矩,或叫动差。如果a=0,则有E(X^k),叫做k阶原点矩,记作 

    向左转|向右转

     ,也叫k阶矩。

    向左转|向右转

    显然,一阶原点矩就是数学期望,即

    向左转|向右转

    原点矩顾名思义,是随机变量到原点的距离(这里假设原点为零点)。中心矩则类似于方差,先要得出样本的期望即均值,然后计算出随机变量到样本均值的一种距离,与方差不同的是,这里所说的距离不再是平方就能构建出来的,而是k次方。

    这也就不难理解为什么原点矩和中心矩不是距离的“距”,而是矩阵的“矩”了。我们都知道方差源于勾股定理,这就不难理解原点矩和中心矩了。还能联想到力学中的力矩也是“矩”,而不是“距”。力矩在物理学里是指作用力使物体绕着转动轴或支点转动的趋向。力矩也是矢量,它等于力乘力臂。

    二阶中心矩,也叫作方差,它告诉我们一个随机变量在它均值附近波动的大小,方差越大,波动性越大。方差也相当于机械运动中以重心为转轴的转动惯量。三阶中心矩告诉我们一个随机密度函数向左或向右偏斜的程度。

    在均值不为零的情况下,原点矩只有纯数学意义。

  • 相关阅读:
    (九)分类展示上
    (八)用户退出
    (七)用户登陆
    opencord视频截图
    (六)电子邮件
    (五)密码加密
    (四)用户注册
    (三)首页处理
    this关键字在继承中的使用
    03.swoole学习笔记--web服务器
  • 原文地址:https://www.cnblogs.com/jfdwd/p/11239101.html
Copyright © 2011-2022 走看看