zoukankan      html  css  js  c++  java
  • hdu 2874 Connections between cities 带权lca判是否联通

    Connections between cities

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)


    Problem Description
    After World War X, a lot of cities have been seriously damaged, and we need to rebuild those cities. However, some materials needed can only be produced in certain places. So we need to transport these materials from city to city. For most of roads had been totally destroyed during the war, there might be no path between two cities, no circle exists as well.
    Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
     
    Input
    Input consists of multiple problem instances.For each instance, first line contains three integers n, m and c, 2<=n<=10000, 0<=m<10000, 1<=c<=1000000. n represents the number of cities numbered from 1 to n. Following m lines, each line has three integers i, j and k, represent a road between city i and city j, with length k. Last c lines, two integers i, j each line, indicates a query of city i and city j.
     
    Output
    For each problem instance, one line for each query. If no path between two cities, output “Not connected”, otherwise output the length of the shortest path between them.
     
    Sample Input
    5 3 2 1 3 2 2 4 3 5 2 3 1 4 4 5
     
    Sample Output
    Not connected 6
    Hint
    Hint Huge input, scanf recommended.
     
    Source
    思路:利用并查集判断是否联通,因为可能不联通,所以可能哟偶多颗树,多次dfs,然后就是模版
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<set>
    #include<map>
    #define true ture
    #define false flase
    using namespace std;
    #define ll long long
    #define inf 0xfffffff
    int scan()
    {
        int res = 0 , ch ;
        while( !( ( ch = getchar() ) >= '0' && ch <= '9' ) )
        {
            if( ch == EOF )  return 1 << 30 ;
        }
        res = ch - '0' ;
        while( ( ch = getchar() ) >= '0' && ch <= '9' )
            res = res * 10 + ( ch - '0' ) ;
        return res ;
    }
    #define maxn 100010
    #define M 22
    int father[maxn];
    struct is
    {
        int v,next,w;
    } edge[maxn*2];
    int deep[maxn],jiedge;
    int dis[maxn];
    int head[maxn];
    int fa[maxn][M];
    int findd(int x)
    {
        return x==father[x]?x:father[x]=findd(father[x]);
    }
    int hebing(int u,int v)
    {
        int x=findd(u);
        int y=findd(v);
        if(x!=y)
        father[x]=y;
    }
    void add(int u,int v,int w)
    {
        jiedge++;
        edge[jiedge].v=v;
        edge[jiedge].w=w;
        edge[jiedge].next=head[u];
        head[u]=jiedge;
    }
    void dfs(int u)
    {
        for(int i=head[u]; i; i=edge[i].next)
        {
            int v=edge[i].v;
            int w=edge[i].w;
            if(!deep[v])
            {
                dis[v]=dis[u]+edge[i].w;
                deep[v]=deep[u]+1;
                fa[v][0]=u;
                dfs(v);
            }
        }
    }
    void st(int n)
    {
        for(int j=1; j<M; j++)
            for(int i=1; i<=n; i++)
                fa[i][j]=fa[fa[i][j-1]][j-1];
    }
    int LCA(int u , int v)
    {
        if(deep[u] < deep[v]) swap(u , v) ;
        int d = deep[u] - deep[v] ;
        int i ;
        for(i = 0 ; i < M ; i ++)
        {
            if( (1 << i) & d )  // 注意此处,动手模拟一下,就会明白的
            {
                u = fa[u][i] ;
            }
        }
        if(u == v) return u ;
        for(i = M - 1 ; i >= 0 ; i --)
        {
            if(fa[u][i] != fa[v][i])
            {
                u = fa[u][i] ;
                v = fa[v][i] ;
            }
        }
        u = fa[u][0] ;
        return u ;
    }
    void init(int n)
    {
        for(int i=1;i<=n;i++)
        father[i]=i;
        memset(head,0,sizeof(head));
        memset(fa,0,sizeof(fa));
        memset(deep,0,sizeof(deep));
        jiedge=0;
    }
    int main()
    {
        int x,n,t;
        while(~scanf("%d%d%d",&n,&x,&t))
        {
            init(n);
            for(int i=0; i<x; i++)
            {
                int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                add(u,v,w);
                add(v,u,w);
                hebing(u,v);
            }
            for(int i=1;i<=n;i++)
            if(!deep[i])
            {
                deep[i]=1;
                dis[i]=0;
                dfs(i);
            }
            st(n);
            while(t--)
            {
                int a,b;
                scanf("%d%d",&a,&b);
                if(findd(a)!=findd(b))
                printf("Not connected
    ");
                else
                printf("%d
    ",dis[a]-2*dis[LCA(a,b)]+dis[b]);
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    并发编程之守护进程、互斥锁以及队列等相关内容-37
    并发编程之进程理论及应用等相关内容-36
    补充知识之猴子补丁、内置函数以及垃圾回收机制等相关内容-35
    面向对象之元类等相关内容-34
    网络编程(套接字)之UDP协议通信以及基于socketserver模块实现并发效果等相关内容-33
    面向对象之组合、多态、以及内置函数及方法等相关内容-27
    面向对象之异常处理等相关内容-28
    网络基础之osi五层协议等相关内容-29
    网络编程(套接字)之TCP协议通信、远程执行命令等相关内容-31
    看到你很好,就行了,走啦!
  • 原文地址:https://www.cnblogs.com/jhz033/p/5406511.html
Copyright © 2011-2022 走看看