zoukankan      html  css  js  c++  java
  • Codeforces Beta Round #17 A.素数相关

    A. Noldbach problem

    Nick is interested in prime numbers. Once he read about Goldbach problem. It states that every even integer greater than 2 can be expressed as the sum of two primes. That got Nick's attention and he decided to invent a problem of his own and call it Noldbach problem. Since Nick is interested only in prime numbers, Noldbach problem states that at least k prime numbers from 2 to n inclusively can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5+ 7 + 1.

    Two prime numbers are called neighboring if there are no other prime numbers between them.

    You are to help Nick, and find out if he is right or wrong.

    Input

    The first line of the input contains two integers n (2 ≤ n ≤ 1000) and k (0 ≤ k ≤ 1000).

    Output

    Output YES if at least k prime numbers from 2 to n inclusively can be expressed as it was described above. Otherwise output NO.

    Examples
    input
    27 2
    output
    YES
    input
    45 7
    output
    NO
    Note

    In the first sample the answer is YES since at least two numbers can be expressed as it was described (for example, 13 and 19). In the second sample the answer is NO since it is impossible to express 7 prime numbers from 2 to 45 in the desired form.

    题意:问2到n间有多少个素数为两个相邻素数相加加一;

    思路:暴力就好了

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<set>
    #include<map>
    #define true ture
    #define false flase
    using namespace std;
    #define ll __int64
    #define inf 0xfffffff
    int scan()
    {
        int res = 0 , ch ;
        while( !( ( ch = getchar() ) >= '0' && ch <= '9' ) )
        {
            if( ch == EOF )  return 1 << 30 ;
        }
        res = ch - '0' ;
        while( ( ch = getchar() ) >= '0' && ch <= '9' )
            res = res * 10 + ( ch - '0' ) ;
        return res ;
    }
    int p[100010],flag[100010];
    int prime(int n)
    {
        if(n<=1)
        return 0;
        if(n==2)
        return 1;
        if(n%2==0)
        return 0;
        int k, upperBound=n/2;
        for(k=3; k<=upperBound; k+=2)
        {
            upperBound=n/k;
            if(n%k==0)
                return 0;
        }
        return 1;
    }
    int main()
    {
        int ji=0;
        for(int i=2;i<=1000;i++)
        {
            if(prime(i))
            p[ji++]=i;
        }
        for(int i=1;i<ji;i++)
        {
            int gg=p[i]+p[i-1]+1;
            if(prime(gg))
            flag[gg]=1;
        }
        int x,y;
        int ans=0;
        scanf("%d%d",&x,&y);
        for(int i=2;i<=x;i++)
        if(flag[i])
        ans++;
        if(ans>=y)
            cout<<"YES"<<endl;
        else
            cout<<"NO"<<endl;
        return 0;
    }
    View Code
  • 相关阅读:
    一段路
    memcache 键名的命名规则以及和memcached的区别
    浏览器解释网页时乱码
    windows下安装Apache
    巧用PHP数组函数
    程序返回值的数据结构
    Linux如何生成列表
    判断用户密码是否在警告期内(学习练习)
    判断用户的用户名和其基本组的组名是否一致
    sed笔记
  • 原文地址:https://www.cnblogs.com/jhz033/p/5459248.html
Copyright © 2011-2022 走看看