zoukankan      html  css  js  c++  java
  • Codeforces Beta Round #17 A.素数相关

    A. Noldbach problem

    Nick is interested in prime numbers. Once he read about Goldbach problem. It states that every even integer greater than 2 can be expressed as the sum of two primes. That got Nick's attention and he decided to invent a problem of his own and call it Noldbach problem. Since Nick is interested only in prime numbers, Noldbach problem states that at least k prime numbers from 2 to n inclusively can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5+ 7 + 1.

    Two prime numbers are called neighboring if there are no other prime numbers between them.

    You are to help Nick, and find out if he is right or wrong.

    Input

    The first line of the input contains two integers n (2 ≤ n ≤ 1000) and k (0 ≤ k ≤ 1000).

    Output

    Output YES if at least k prime numbers from 2 to n inclusively can be expressed as it was described above. Otherwise output NO.

    Examples
    input
    27 2
    output
    YES
    input
    45 7
    output
    NO
    Note

    In the first sample the answer is YES since at least two numbers can be expressed as it was described (for example, 13 and 19). In the second sample the answer is NO since it is impossible to express 7 prime numbers from 2 to 45 in the desired form.

    题意:问2到n间有多少个素数为两个相邻素数相加加一;

    思路:暴力就好了

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<set>
    #include<map>
    #define true ture
    #define false flase
    using namespace std;
    #define ll __int64
    #define inf 0xfffffff
    int scan()
    {
        int res = 0 , ch ;
        while( !( ( ch = getchar() ) >= '0' && ch <= '9' ) )
        {
            if( ch == EOF )  return 1 << 30 ;
        }
        res = ch - '0' ;
        while( ( ch = getchar() ) >= '0' && ch <= '9' )
            res = res * 10 + ( ch - '0' ) ;
        return res ;
    }
    int p[100010],flag[100010];
    int prime(int n)
    {
        if(n<=1)
        return 0;
        if(n==2)
        return 1;
        if(n%2==0)
        return 0;
        int k, upperBound=n/2;
        for(k=3; k<=upperBound; k+=2)
        {
            upperBound=n/k;
            if(n%k==0)
                return 0;
        }
        return 1;
    }
    int main()
    {
        int ji=0;
        for(int i=2;i<=1000;i++)
        {
            if(prime(i))
            p[ji++]=i;
        }
        for(int i=1;i<ji;i++)
        {
            int gg=p[i]+p[i-1]+1;
            if(prime(gg))
            flag[gg]=1;
        }
        int x,y;
        int ans=0;
        scanf("%d%d",&x,&y);
        for(int i=2;i<=x;i++)
        if(flag[i])
        ans++;
        if(ans>=y)
            cout<<"YES"<<endl;
        else
            cout<<"NO"<<endl;
        return 0;
    }
    View Code
  • 相关阅读:
    matplotlib数据可视化之柱形图
    xpath排坑记
    Leetcode 100. 相同的树
    Leetcode 173. 二叉搜索树迭代器
    Leetcode 199. 二叉树的右视图
    Leetcode 102. 二叉树的层次遍历
    Leetcode 96. 不同的二叉搜索树
    Leetcode 700. 二叉搜索树中的搜索
    Leetcode 2. Add Two Numbers
    Leetcode 235. Lowest Common Ancestor of a Binary Search Tree
  • 原文地址:https://www.cnblogs.com/jhz033/p/5459248.html
Copyright © 2011-2022 走看看