zoukankan      html  css  js  c++  java
  • Codeforces Beta Round #17 A.素数相关

    A. Noldbach problem

    Nick is interested in prime numbers. Once he read about Goldbach problem. It states that every even integer greater than 2 can be expressed as the sum of two primes. That got Nick's attention and he decided to invent a problem of his own and call it Noldbach problem. Since Nick is interested only in prime numbers, Noldbach problem states that at least k prime numbers from 2 to n inclusively can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5+ 7 + 1.

    Two prime numbers are called neighboring if there are no other prime numbers between them.

    You are to help Nick, and find out if he is right or wrong.

    Input

    The first line of the input contains two integers n (2 ≤ n ≤ 1000) and k (0 ≤ k ≤ 1000).

    Output

    Output YES if at least k prime numbers from 2 to n inclusively can be expressed as it was described above. Otherwise output NO.

    Examples
    input
    27 2
    output
    YES
    input
    45 7
    output
    NO
    Note

    In the first sample the answer is YES since at least two numbers can be expressed as it was described (for example, 13 and 19). In the second sample the answer is NO since it is impossible to express 7 prime numbers from 2 to 45 in the desired form.

    题意:问2到n间有多少个素数为两个相邻素数相加加一;

    思路:暴力就好了

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<set>
    #include<map>
    #define true ture
    #define false flase
    using namespace std;
    #define ll __int64
    #define inf 0xfffffff
    int scan()
    {
        int res = 0 , ch ;
        while( !( ( ch = getchar() ) >= '0' && ch <= '9' ) )
        {
            if( ch == EOF )  return 1 << 30 ;
        }
        res = ch - '0' ;
        while( ( ch = getchar() ) >= '0' && ch <= '9' )
            res = res * 10 + ( ch - '0' ) ;
        return res ;
    }
    int p[100010],flag[100010];
    int prime(int n)
    {
        if(n<=1)
        return 0;
        if(n==2)
        return 1;
        if(n%2==0)
        return 0;
        int k, upperBound=n/2;
        for(k=3; k<=upperBound; k+=2)
        {
            upperBound=n/k;
            if(n%k==0)
                return 0;
        }
        return 1;
    }
    int main()
    {
        int ji=0;
        for(int i=2;i<=1000;i++)
        {
            if(prime(i))
            p[ji++]=i;
        }
        for(int i=1;i<ji;i++)
        {
            int gg=p[i]+p[i-1]+1;
            if(prime(gg))
            flag[gg]=1;
        }
        int x,y;
        int ans=0;
        scanf("%d%d",&x,&y);
        for(int i=2;i<=x;i++)
        if(flag[i])
        ans++;
        if(ans>=y)
            cout<<"YES"<<endl;
        else
            cout<<"NO"<<endl;
        return 0;
    }
    View Code
  • 相关阅读:
    glog Windows Visual Studio 2013 编译项目
    Git Tag管理发行版本
    Ubuntu 16.04环境中读取XBOX 360手柄信息
    GCC 中 的pie和fpie选项
    CMakeLists.txt 常用指令说用
    chrome无法访问github.com
    删除前n天的数据
    shell(9)秒转换为时分秒
    Drools规则引擎实践直白总结
    空闲时间研究一个小功能:winform桌面程序如何实现动态更换桌面图标
  • 原文地址:https://www.cnblogs.com/jhz033/p/5459248.html
Copyright © 2011-2022 走看看