Calculation 2
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Problem Description
Given a positive integer N, your task is to calculate the sum of the positive integers less than N which are not coprime to N. A is said to be coprime to B if A, B share no common positive divisors except 1.
Input
For each test case, there is a line containing a positive integer N(1 ≤ N ≤ 1000000000). A line containing a single 0 follows the last test case.
Output
For each test case, you should print the sum module 1000000007 in a line.
Sample Input
3
4
0
Sample Output
0
2
Author
GTmac
Source
思路:没接触欧拉函数的思路就是,利用唯一分解定理;得到所有质因数;
然后再利用容斥原理得到答案;
然后有个欧拉函数;
首先你需要知道有个这样的定理:如果 gcd(n,i)=1则 gcd(n,n-i)=1 (1<=i<=n)
可得小于n的并与n互质的和为p*phi(p)/2;
这题需要求总和再相减;
View Code
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
#include<iostream> #include<cstdio> #include<cmath> #include<string> #include<queue> #include<algorithm> #include<stack> #include<cstring> #include<vector> #include<list> #include<set> #include<map> using namespace std; #define ll __int64 #define mod 1000000007 #define inf 999999999 //#pragma comment(linker, "/STACK:102400000,102400000") int scan() { int res = 0 , ch ; while( !( ( ch = getchar() ) >= '0' && ch <= '9' ) ) { if( ch == EOF ) return 1 << 30 ; } res = ch - '0' ; while( ( ch = getchar() ) >= '0' && ch <= '9' ) res = res * 10 + ( ch - '0' ) ; return res ; } ll phi(ll n) { ll i,rea=n; for(i=2;i*i<=n;i++) { if(n%i==0) { rea=rea-rea/i; while(n%i==0) n/=i; } } if(n>1) rea=rea-rea/n; return rea; } int main() { ll x; while(~scanf("%I64d",&x)) { if(!x)break; ll ans=(x*(x-1-phi(x))/2); printf("%I64d ",ans%mod); } return 0; }