zoukankan      html  css  js  c++  java
  • hdu 5656 CA Loves GCD dp

    CA Loves GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)

    Problem Description
    CA is a fine comrade who loves the party and people; inevitably she loves GCD (greatest common divisor) too. 
    Now, there are N different numbers. Each time, CA will select several numbers (at least one), and find the GCD of these numbers. In order to have fun, CA will try every selection. After that, she wants to know the sum of all GCDs. 
    If and only if there is a number exists in a selection, but does not exist in another one, we think these two selections are different from each other.
     
    Input
    First line contains T denoting the number of testcases.
    T testcases follow. Each testcase contains a integer in the first time, denoting N, the number of the numbers CA have. The second line is N numbers. 
    We guarantee that all numbers in the test are in the range [1,1000].
    1T50
     
    Output
    T lines, each line prints the sum of GCDs mod 100000007.
     
    Sample Input
    2 2 2 4 3 1 2 3
     
    Sample Output
    8 10
     
    Source

    By YJQ 我们令dp[i][j]表示在前i个数中,选出若干个数使得它们的gcd为j的方案数,于是只需要枚举第i+1个数是否被选中来转移就可以了

    令第i+1个数为v,当考虑dp[i][j]的时候,我们令dp[i+1][j] += dp[i][j]dp[i+1][j]+=dp[i][j](v 不选),dp[i+1][gcd(j,v)] += dp[i][j]dp[i+1][gcd(j,v)]+=dp[i][j](v 选)

    复杂度O(N*MaxV) MaxV 为出现过的数的最大值

    ps:取模的那个数是坑点。。。。平常是1e9+7。。。

    #include<bits/stdc++.h>
    using namespace std;
    #define ll __int64
    #define mod 100000007
    #define esp 0.00000000001
    const int N=1e3+10,M=1e6+10,inf=1e9;
    ll dp[N][N];
    int a[N];
    int flag[N][N];
    int gcd(int x,int y)
    {
        return y==0?x:gcd(y,x%y);
    }
    int main()
    {
        int x,y,z,i,t;
        for(i=1;i<=1000;i++)
        for(t=1;t<=1000;t++)
        flag[i][t]=gcd(i,t);
        int T;
        scanf("%d",&T);
        while(T--)
        {
            memset(dp,0,sizeof(dp));
            int maxx=0;
            scanf("%d",&x);
            for(i=1;i<=x;i++)
            {
                scanf("%d",&a[i]);
                maxx=max(a[i],maxx);
            }
            for(i=1;i<=x;i++)
            {
                dp[i][a[i]]+=1;
                for(t=1;t<=maxx;t++)
                {
                    dp[i][t]+=dp[i-1][t];
                    dp[i][t]%=mod;
                    dp[i][flag[t][a[i]]]+=dp[i-1][t];
                    dp[i][flag[t][a[i]]]%=mod;
                }
            }
            ll ans=0;
            for(ll i=1;i<=maxx;i++)
            {
                ans+=(i*dp[x][i])%mod;
                ans%=mod;
            }
            printf("%I64d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    JS DOM2级事件兼容处理
    JS DOM2级事件基础
    JS 事件基础
    JS 动态规划 LeetCode 一和零
    JS 动态规划入门
    JS 动画优化 代码篇
    LeetCode笔记整理1 摩尔投票法
    LeetCode笔记整理3 二叉树中序遍历 Morris中序遍历
    java面向对象编程——第四章 类和对象
    java面向对象编程——第六章 数组
  • 原文地址:https://www.cnblogs.com/jhz033/p/5635823.html
Copyright © 2011-2022 走看看