zoukankan      html  css  js  c++  java
  • Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元

    E. Mike and Geometry Problem
    time limit per test
    3 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's definef([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:

    In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.

    As the answer may be very large, output it modulo 1000000007 (109 + 7).

    Mike can't solve this problem so he needs your help. You will help him, won't you?

    Input

    The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.

    Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.

    Output

    Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.

    Examples
    input
    3 2
    1 2
    1 3
    2 3
    output
    5
    input
    3 3
    1 3
    1 3
    1 3
    output
    3
    input
    3 1
    1 2
    2 3
    3 4
    output
    6
    Note

    In the first example:

    ;

    ;

    .

    So the answer is 2 + 1 + 2 = 5.

    思路:给你n条线段,把线段放进数轴每次处理每个点的贡献,端点另外算;

      给两组数据

      2 1

          1 3 

      3 4

          2 1

      1 3

      5 6

    #include<bits/stdc++.h>
    using namespace std;
    #define ll __int64
    #define esp 0.00000000001
    const int N=2e5+10,M=1e6+10,inf=1e9,mod=1e9+7;
    struct is
    {
        ll l,r;
    }a[N];
    ll poww(ll a,ll n)//快速幂
    {
       ll r=1,p=a;
       while(n)
       {
           if(n&1) r=(r*p)%mod;
           n>>=1;
           p=(p*p)%mod;
       }
       return r;
    }
    ll flag[N*4];
    ll lisan[N*4];
    ll sum[N*4];
    ll zz[N*2];
    int main()
    {
        ll x,y,z,i,t;
        scanf("%I64d%I64d",&x,&y);
        int ji=1;
        for(i=0;i<x;i++)
        {
            scanf("%I64d%I64d",&a[i].l,&a[i].r);
            flag[ji++]=a[i].l;
            flag[ji++]=a[i].l+1;
            flag[ji++]=a[i].r;
            flag[ji++]=a[i].r+1;
        }
        sort(flag+1,flag+ji);
        ji=unique(flag+1,flag+ji)-(flag+1);
        int h=1;
        for(i=1;i<=ji;i++)
        lisan[h++]=flag[i];
        memset(flag,0,sizeof(flag));
        for(i=0;i<x;i++)
        {
            int l=lower_bound(lisan+1,lisan+h,a[i].l)-lisan;
            int r=lower_bound(lisan+1,lisan+h,a[i].r)-lisan;
            flag[l]++;
            flag[r+1]--;
        }
        for(i=1;i<=h;i++)
        sum[i]=sum[i-1]+flag[i];
        ll ans=0;
        memset(zz,0,sizeof(zz));
        zz[y]=1;
        for (i=y+1;i<=2*x;i++) zz[i]=((zz[i-1]*i%mod)*poww(i-y,mod-2))%mod;
        for(i=1;i<h;i++)
        {
            int zh=min(sum[i],sum[i-1]);
            ans+=zz[zh]*(lisan[i]-lisan[i-1]-1);
            ans+=zz[sum[i]];
            ans%=mod;
        }
        printf("%I64d
    ",ans);
        return 0;
    }
  • 相关阅读:
    Hdu 4221 Greedy?
    Hdu 2955 Robberies
    Hdu 3309 Roll The Cube
    Hdu 2602 Bone Collector
    Hdu 2844 Coins
    Hdu 2255奔小康赚大钱
    Hdu 2120 Ice_cream's world I
    Hdu 2159 FATE
    Hdu 2102 A计划
    Hdu 2098分拆素数和
  • 原文地址:https://www.cnblogs.com/jhz033/p/5654406.html
Copyright © 2011-2022 走看看