Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's definef([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:

In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
3 2
1 2
1 3
2 3
5
3 3
1 3
1 3
1 3
3
3 1
1 2
2 3
3 4
6
In the first example:
;
;
.
So the answer is 2 + 1 + 2 = 5.
思路:给你n条线段,把线段放进数轴每次处理每个点的贡献,端点另外算;
给两组数据
2 1
1 3
3 4
2 1
1 3
5 6
#include<bits/stdc++.h> using namespace std; #define ll __int64 #define esp 0.00000000001 const int N=2e5+10,M=1e6+10,inf=1e9,mod=1e9+7; struct is { ll l,r; }a[N]; ll poww(ll a,ll n)//快速幂 { ll r=1,p=a; while(n) { if(n&1) r=(r*p)%mod; n>>=1; p=(p*p)%mod; } return r; } ll flag[N*4]; ll lisan[N*4]; ll sum[N*4]; ll zz[N*2]; int main() { ll x,y,z,i,t; scanf("%I64d%I64d",&x,&y); int ji=1; for(i=0;i<x;i++) { scanf("%I64d%I64d",&a[i].l,&a[i].r); flag[ji++]=a[i].l; flag[ji++]=a[i].l+1; flag[ji++]=a[i].r; flag[ji++]=a[i].r+1; } sort(flag+1,flag+ji); ji=unique(flag+1,flag+ji)-(flag+1); int h=1; for(i=1;i<=ji;i++) lisan[h++]=flag[i]; memset(flag,0,sizeof(flag)); for(i=0;i<x;i++) { int l=lower_bound(lisan+1,lisan+h,a[i].l)-lisan; int r=lower_bound(lisan+1,lisan+h,a[i].r)-lisan; flag[l]++; flag[r+1]--; } for(i=1;i<=h;i++) sum[i]=sum[i-1]+flag[i]; ll ans=0; memset(zz,0,sizeof(zz)); zz[y]=1; for (i=y+1;i<=2*x;i++) zz[i]=((zz[i-1]*i%mod)*poww(i-y,mod-2))%mod; for(i=1;i<h;i++) { int zh=min(sum[i],sum[i-1]); ans+=zz[zh]*(lisan[i]-lisan[i-1]-1); ans+=zz[sum[i]]; ans%=mod; } printf("%I64d ",ans); return 0; }