zoukankan      html  css  js  c++  java
  • Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元

    E. Mike and Geometry Problem
    time limit per test
    3 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's definef([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:

    In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.

    As the answer may be very large, output it modulo 1000000007 (109 + 7).

    Mike can't solve this problem so he needs your help. You will help him, won't you?

    Input

    The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.

    Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.

    Output

    Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.

    Examples
    input
    3 2
    1 2
    1 3
    2 3
    output
    5
    input
    3 3
    1 3
    1 3
    1 3
    output
    3
    input
    3 1
    1 2
    2 3
    3 4
    output
    6
    Note

    In the first example:

    ;

    ;

    .

    So the answer is 2 + 1 + 2 = 5.

    思路:给你n条线段,把线段放进数轴每次处理每个点的贡献,端点另外算;

      给两组数据

      2 1

          1 3 

      3 4

          2 1

      1 3

      5 6

    #include<bits/stdc++.h>
    using namespace std;
    #define ll __int64
    #define esp 0.00000000001
    const int N=2e5+10,M=1e6+10,inf=1e9,mod=1e9+7;
    struct is
    {
        ll l,r;
    }a[N];
    ll poww(ll a,ll n)//快速幂
    {
       ll r=1,p=a;
       while(n)
       {
           if(n&1) r=(r*p)%mod;
           n>>=1;
           p=(p*p)%mod;
       }
       return r;
    }
    ll flag[N*4];
    ll lisan[N*4];
    ll sum[N*4];
    ll zz[N*2];
    int main()
    {
        ll x,y,z,i,t;
        scanf("%I64d%I64d",&x,&y);
        int ji=1;
        for(i=0;i<x;i++)
        {
            scanf("%I64d%I64d",&a[i].l,&a[i].r);
            flag[ji++]=a[i].l;
            flag[ji++]=a[i].l+1;
            flag[ji++]=a[i].r;
            flag[ji++]=a[i].r+1;
        }
        sort(flag+1,flag+ji);
        ji=unique(flag+1,flag+ji)-(flag+1);
        int h=1;
        for(i=1;i<=ji;i++)
        lisan[h++]=flag[i];
        memset(flag,0,sizeof(flag));
        for(i=0;i<x;i++)
        {
            int l=lower_bound(lisan+1,lisan+h,a[i].l)-lisan;
            int r=lower_bound(lisan+1,lisan+h,a[i].r)-lisan;
            flag[l]++;
            flag[r+1]--;
        }
        for(i=1;i<=h;i++)
        sum[i]=sum[i-1]+flag[i];
        ll ans=0;
        memset(zz,0,sizeof(zz));
        zz[y]=1;
        for (i=y+1;i<=2*x;i++) zz[i]=((zz[i-1]*i%mod)*poww(i-y,mod-2))%mod;
        for(i=1;i<h;i++)
        {
            int zh=min(sum[i],sum[i-1]);
            ans+=zz[zh]*(lisan[i]-lisan[i-1]-1);
            ans+=zz[sum[i]];
            ans%=mod;
        }
        printf("%I64d
    ",ans);
        return 0;
    }
  • 相关阅读:
    第四周总结&实验报告二
    实验报告 一
    周总结
    期末总结
    第十二周作业
    第十一周作业
    第十周作业
    第九周作业
    第八周作业
    第五周课程总结&试验报告(三)
  • 原文地址:https://www.cnblogs.com/jhz033/p/5654406.html
Copyright © 2011-2022 走看看