Author has gone out of the stories about Vasiliy, so here is just a formal task description.
You are given q queries and a multiset A, initially containing only integer 0. There are three types of queries:
- "+ x" — add integer x to multiset A.
- "- x" — erase one occurrence of integer x from multiset A. It's guaranteed that at least one x is present in the multiset A before this query.
- "? x" — you are given integer x and need to compute the value , i.e. the maximum value of bitwise exclusive OR (also know as XOR) of integer x and some integer y from the multiset A.
Multiset is a set, where equal elements are allowed.
The first line of the input contains a single integer q (1 ≤ q ≤ 200 000) — the number of queries Vasiliy has to perform.
Each of the following q lines of the input contains one of three characters '+', '-' or '?' and an integer xi (1 ≤ xi ≤ 109). It's guaranteed that there is at least one query of the third type.
Note, that the integer 0 will always be present in the set A.
For each query of the type '?' print one integer — the maximum value of bitwise exclusive OR (XOR) of integer xi and some integer from the multiset A.
10
+ 8
+ 9
+ 11
+ 6
+ 1
? 3
- 8
? 3
? 8
? 11
11
10
14
13
After first five operations multiset A contains integers 0, 8, 9, 11, 6 and 1.
The answer for the sixth query is integer — maximum among integers , , , and .
题意:n个操作,+ x表示在一个Multiset中添加一个x的数;
- x表示在一个Multiset中删除一个x的数;
? x表示输出x与Multiset中一个最大的异或值
思路:trie数,找x的二进制为相反,相反的位置最大结果越优;
#include<bits/stdc++.h> using namespace std; #define ll __int64 #define mod 1000000007 #define pi (4*atan(1.0)) const int N=1e5+10,M=4e6+10,inf=1e9+10; int a[M][3],sum[M],len; void init() { memset(a,0,sizeof(a)); memset(sum,0,sizeof(sum)); len=1; } void insertt(int x) { int num[35]; memset(num,0,sizeof(num)); int flag=0; while(x) { num[flag++]=x%2; x/=2; } int u=0,n=34; for(int i=n; i>=0; i--) { if(!a[u][num[i]]) { a[u][num[i]]=len++; } u=a[u][num[i]]; sum[u]++; } } void del(int x) { int num[35]; memset(num,0,sizeof(num)); int flag=0; while(x) { num[flag++]=x%2; x/=2; } int u=0,n=34; for(int i=n; i>=0; i--) { int v=a[u][num[i]]; sum[v]--; if(!sum[v]) a[u][num[i]]=0; u=v; } } int getans(int x) { int num[35]; memset(num,0,sizeof(num)); int flag=0; while(x) { num[flag++]=x%2; x/=2; } for(int i=0; i<=34; i++) num[i]=num[i]?0:1; int u=0,n=34,v,w; int ans=0; for(int i=n; i>=0; i--) { if(num[i]) { v=1; w=0; } else { w=1; v=0; } if(a[u][v]) { u=a[u][v]; ans+=(1<<i); } else u=a[u][w]; } return ans; } char ch[10]; int main() { int x,y,z,i,t; int T,cas; init(); insertt(0); scanf("%d",&T); for(cas=1; cas<=T; cas++) { scanf("%s %d",ch,&x); if(ch[0]=='+') insertt(x); else if(ch[0]=='-') del(x); else printf("%d ",getans(x)); } return 0; }