zoukankan      html  css  js  c++  java
  • hdu 5663 Hillan and the girl 莫比乌斯反演

    Hillan and the girl

    Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)


    Problem Description
    “WTF! While everyone has his girl(gay) friend, I only have my keyboard!” Tired of watching others' affair, Hillan burst into scream, which made him decide not to hold it back.
    “All right, I am giving you a question. If you answer correctly, I will be your girl friend.” After listening to Hillan, Girl replied, “What is the value of ni=1mj=1f(i,j), where f(i,j)=0 if gcd(i,j) is a square number and f(i,j)=1 if gcd(i,j) is not a square number(gcd(i,j) means the greatest common divisor of x and y)?”
    But Hillan didn't have enough Intelligence Quotient to give the right answer. So he turn to you for help.
     
    Input
    The first line contains an integer T(1T10,000)——The number of the test cases.
    For each test case, the only line contains two integers n,m(1n,m10,000,000) with a white space separated.
     
    Output
    For each test case, the only line contains a integer that is the answer.
     
    Sample Input
    2 1 2333333 10 10
     
    Sample Output
    0 33
    Hint
    In the first test case, obviously $fleft(i,j ight)$ always equals to 0, because $i$ always equals to 1 and $gcdleft(i,j ight)$ is always a square number(always equals to 1).
     
    Source
                      min(n,m) min(n/k,m/k)
    思路:首先推到∑     ∑ mu(d)  * [n/k/d] * [m/k/d];  k为完全平方数;
          k=1   d=1
       令T=k*d;
       可得:
          min(n,m)                    
          ∑   [n/T] * [m/T]  ∑   mu(T/k)  ;
          T          k|T
          令gg数组等于 ∑   mu(T/k)  相当于原来的mu函数;
                 k|T
          和原来一样分块即可;
    #include<bits/stdc++.h>
    using namespace std;
    #define ll __int64
    #define esp 0.00000000001
    #define pi 4*atan(1)
    const int N=1e7+10,M=1e7+10,inf=1e9+10,mod=1e9+7;
    int mu[N], p[N], np[N], cnt, sum[N];
    ll gg[N];
    void init() {
        mu[1]=1;
        for(int i=2; i<N; ++i) {
            if(!np[i]) p[++cnt]=i, mu[i]=-1;
            for(int j=1; j<=cnt && i*p[j]<N; ++j) {
                int t=i*p[j];
                np[t]=1;
                if(i%p[j]==0) { mu[t]=0; break; }
                mu[t]=-mu[i];
            }
        }
        for(int i=1;i*i<N;i++)
        {
            for(int t=i*i;t<N;t+=(i*i))
            sum[t]+=mu[t/i/i];
        }
        for(int i=1;i<N;i++)
        gg[i]=gg[i-1]+sum[i];
    
    }
    ll getans(ll b,ll d)
    {
        if(b>d)swap(b,d);
        ll ans=0;
        for(ll L=1,R=0;L<=b;L=R+1)
        {
            R=min(b/(b/L),d/(d/L));
            ans+=(b/L)*(d/L)*(gg[R]-gg[L-1]);
        }
        return ans;
    }
    int main()
    {
        int T;
        init();
        scanf("%d",&T);
        while(T--)
        {
            ll b,d;
            scanf("%I64d%I64d",&b,&d);
            printf("%I64d
    ",(b*d)-getans(b,d));
        }
        return 0;
    }
  • 相关阅读:
    无向图的双连通分量
    以管理员身份运行软件cmd命令
    异或
    递推求解DAG最长路径长度及最长路径条数
    有向图转强连通图最少加边数
    Tarjan强连通分量(scc)
    uni封装request请求
    生命周期
    页面路由,以及传值
    WXS 模块
  • 原文地址:https://www.cnblogs.com/jhz033/p/5790129.html
Copyright © 2011-2022 走看看