zoukankan      html  css  js  c++  java
  • Codeforces Round #256 (Div. 2) E. Divisors 因子+dfs

    E. Divisors
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Bizon the Champion isn't just friendly, he also is a rigorous coder.

    Let's define function f(a), where a is a sequence of integers. Function f(a) returns the following sequence: first all divisors of a1 go in the increasing order, then all divisors of a2 go in the increasing order, and so on till the last element of sequence a. For example,f([2, 9, 1]) = [1, 2, 1, 3, 9, 1].

    Let's determine the sequence Xi, for integer i (i ≥ 0): X0 = [X] ([X] is a sequence consisting of a single number X), Xi = f(Xi - 1) (i > 0). For example, at X = 6 we get X0 = [6], X1 = [1, 2, 3, 6], X2 = [1, 1, 2, 1, 3, 1, 2, 3, 6].

    Given the numbers X and k, find the sequence Xk. As the answer can be rather large, find only the first 105 elements of this sequence.

    Input

    A single line contains two space-separated integers — X (1 ≤ X ≤ 1012) and k (0 ≤ k ≤ 1018).

    Output

    Print the elements of the sequence Xk in a single line, separated by a space. If the number of elements exceeds 105, then print only the first 105 elements.

    Examples
    input
    6 1
    output
    1 2 3 6 
    input
    4 2
    output
    1 1 2 1 2 4 
    input
    10 3
    output
    1 1 1 2 1 1 5 1 1 2 1 5 1 2 5 10 

     题意:给你一个数,分解k次;

       每次将每个数分解成它的质因数,个数>=1e5不输出;

    思路:枚举质因数,dfs求解,详见代码;

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define pi (4*atan(1.0))
    const int N=2e5+10,M=4e6+10,inf=1e9+10;
    ll x,k,flag;
    set<ll>s;
    set<ll>::iterator it;
    ll p[N],len;
    void dfs(ll x,ll step)
    {
        if(step>k)return;
        if(flag>=100000)return;
        if(step==k||x==1)
        {
            if(flag>=100000)return;
            printf("%lld ",x);
            flag++;
            return;
        }
        for(ll i=0;i<len;i++)
        {
            ll v=p[i];
            if(v>x)break;
            //cout<<v<<"cccc"<<x<<endl;
            if(x%v==0)
            dfs(v,step+1);
        }
    }
    int main()
    {
        scanf("%lld%lld",&x,&k);
        len=0;
        for(ll i=1;i*i<=x;i++)
        {
            if(i*i==x)
            p[len++]=i;
            else if(x%i==0)
            p[len++]=i,p[len++]=x/i;
        }
        sort(p,p+len);
        flag=0;
        dfs(x,0);
        return 0;
    }
  • 相关阅读:
    无废话XML--XML约束(DTD)
    无废话XML--XML细节
    XML,HTML,XHTML
    javabean内省
    反射应用--IOC和AOP
    JDK动态代理
    反射
    类加载机制
    linkin大话数据结构--泛型
    java异常处理
  • 原文地址:https://www.cnblogs.com/jhz033/p/5845067.html
Copyright © 2011-2022 走看看