Kingdom of Obsession
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Problem Description
There is a kindom of obsession, so people in this kingdom do things very strictly.
They name themselves in integer, and there are n
people with their id continuous (s+1,s+2,⋯,s+n)
standing in a line in arbitrary order, be more obsessively, people with id x
wants to stand at y
th![]()
position which satisfy
Is there any way to satisfy everyone's requirement?
They name themselves in integer, and there are n
xmody=0![]()
Is there any way to satisfy everyone's requirement?
Input
First line contains an integer T
, which indicates the number of test cases.
Every test case contains one line with two integers n
, s
.
Limits
1≤T≤100
.
1≤n≤10
9![]()
.
0≤s≤10
9![]()
.
Every test case contains one line with two integers n
Limits
1≤T≤100
1≤n≤10
0≤s≤10
Output
For every test case, you should output 'Case #x: y', where x indicates the case number and counts from 1 and y is the result string.
If there is any way to satisfy everyone's requirement, y equals 'Yes', otherwise y equals 'No'.
If there is any way to satisfy everyone's requirement, y equals 'Yes', otherwise y equals 'No'.
Sample Input
2 5 14 4 11
Sample Output
Case #1: No Case #2: Yes
Source
![](https://images2015.cnblogs.com/blog/912292/201610/912292-20161029185200828-630165375.png)
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
const int N=2e5+10,M=1e6+10,inf=1e9+10,mod=1e9+7;
const ll INF=1e18+10;
int prime(int n)
{
if(n<=1)return 0;
if(n==2)return 1;
if(n%2==0)return 0;
int k, upperBound=n/2;
for(k=3; k<=upperBound; k+=2)
{
upperBound=n/k;
if(n%k==0)return 0;
}
return 1;
}
const int MAXN=1505;
map<int,int>linker;
map<int,int>used;
vector<int>mp[MAXN];
int uN;
bool dfs(int u)
{
for(int i=0;i<mp[u].size();i++)
{
if(!used[mp[u][i]])
{
used[mp[u][i]]=1;
if(linker[mp[u][i]]==0||dfs(linker[mp[u][i]]))
{
linker[mp[u][i]]=u;
return true;
}
}
}
return false;
}
int hungary()
{
int u;
int res=0;
linker.clear();
for(u=1;u<=uN;u++)
{
used.clear();
if(dfs(u)) res++;
}
return res;
}
int main()
{
int T,cas=1;
scanf("%d",&T);
while(T--)
{
for(int i=0;i<MAXN;i++)
mp[i].clear();
int n,s;
scanf("%d%d",&n,&s);
if(n>s)swap(n,s);
int p=0;
for(int i=s+1; i<=s+n; i++)
{
if(prime(i))
{
p++;
if(p>=2)break;
}
}
printf("Case #%d: ",cas++);
if(p>=2)
{
printf("No
");
continue;
}
for(int i=s+1; i<=s+n; i++)
{
for(int j=1; j<=n; j++)
{
if(i%j==0)
{
mp[j].push_back(i);
}
}
}
uN=n;
int hh=hungary();
if(hh==n)
printf("Yes
");
else
printf("No
");
}
return 0;
}