zoukankan      html  css  js  c++  java
  • Codeforces Round #278 (Div. 2) D. Strip 线段树优化dp

    D. Strip
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Alexandra has a paper strip with n numbers on it. Let's call them ai from left to right.

    Now Alexandra wants to split it into some pieces (possibly 1). For each piece of strip, it must satisfy:

    • Each piece should contain at least l numbers.
    • The difference between the maximal and the minimal number on the piece should be at most s.

    Please help Alexandra to find the minimal number of pieces meeting the condition above.

    Input

    The first line contains three space-separated integers n, s, l (1 ≤ n ≤ 105, 0 ≤ s ≤ 109, 1 ≤ l ≤ 105).

    The second line contains n integers ai separated by spaces ( - 109 ≤ ai ≤ 109).

    Output

    Output the minimal number of strip pieces.

    If there are no ways to split the strip, output -1.

    Examples
    input
    7 2 2
    1 3 1 2 4 1 2
    output
    3
    input
    7 2 2
    1 100 1 100 1 100 1
    output
    -1
    Note

    For the first sample, we can split the strip into 3 pieces: [1, 3, 1], [2, 4], [1, 2].

    For the second sample, we can't let 1 and 100 be on the same piece, so no solution exists.

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<set>
    #include<map>
    using namespace std;
    #define ll long long
    #define pi (4*atan(1.0))
    #define eps 1e-14
    #define bug(x)  cout<<"bug"<<x<<endl;
    const int N=1e5+10,M=1e6+10,inf=2e9;
    const ll INF=1e18+10,mod=2147493647;
    int a[N];
    struct linetree
    {
        int maxx[N<<2],minn[N<<2];
        void pushup(int pos)
        {
            maxx[pos]=max(maxx[pos<<1],maxx[pos<<1|1]);
            minn[pos]=min(minn[pos<<1],minn[pos<<1|1]);
        }
        void build(int l,int r,int pos)
        {
            if(l==r)
            {
                maxx[pos]=a[l];
                minn[pos]=a[l];
                return;
            }
            int mid=(l+r)>>1;
            build(l,mid,pos<<1);
            build(mid+1,r,pos<<1|1);
            pushup(pos);
        }
        void update(int p,int c,int l,int r,int pos)
        {
            if(l==r)
            {
                maxx[pos]=c;
                minn[pos]=c;
                return;
            }
            int mid=(l+r)>>1;
            if(p<=mid)
                update(p,c,l,mid,pos<<1);
            else
                update(p,c,mid+1,r,pos<<1|1);
            pushup(pos);
        }
        int query(int L,int R,int l,int r,int pos,int flag)
        {
            if(L<=l&&r<=R)
            {
                if(flag)
                    return maxx[pos];
                else
                    return minn[pos];
            }
            int mid=(l+r)>>1;
            int ans=-inf;
            if(!flag)
                ans=inf;
            if(L<=mid)
                if(flag)
                    ans=max(ans,query(L,R,l,mid,pos<<1,flag));
                else
                    ans=min(ans,query(L,R,l,mid,pos<<1,flag));
            if(R>mid)
                if(flag)
                    ans=max(ans,query(L,R,mid+1,r,pos<<1|1,flag));
                else
                    ans=min(ans,query(L,R,mid+1,r,pos<<1|1,flag));
            return ans;
        }
    };
    linetree tree,dp;
    int main()
    {
        int n,l,s;
        scanf("%d%d%d",&n,&s,&l);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        tree.build(1,n+1,1);
        dp.build(1,n+1,1);
        dp.update(1,0,1,n+1,1);
        for(int i=1;i<=n;i++)
        {
            int st=0,en=i-l,ans=-1;
            while(st<=en)
            {
                int mid=(st+en)>>1;
                if(tree.query(mid+1,i,1,n+1,1,1)-tree.query(mid+1,i,1,n+1,1,0)<=s)
                {
                    ans=mid;
                    en=mid-1;
                }
                else
                    st=mid+1;
            }
            //cout<<ans<<endl;
            if(ans==-1||ans+1>i-l+1)
                dp.update(i+1,inf,1,n+1,1);
            else
            {
                int minn=dp.query(ans+1,i-l+1,1,n+1,1,0);
                //cout<<ans+1<<" "<<i-l+1<<" "<<i<<" "<<minn<<endl;
                dp.update(i+1,minn+1,1,n+1,1);
            }
    
        }
        if(dp.query(n+1,n+1,1,n+1,1,1)>=inf)
            printf("-1");
        else
            printf("%d
    ",dp.query(n+1,n+1,1,n+1,1,1));
        return 0;
    }
    ///  dp[i]=min(dp[mid-1]-dp[i-l])+1
  • 相关阅读:
    SQL 数据库中将某表中的一列数据拆分作为查询条件
    SQL数据库导入数据时提示未在本地计算机上注册“Microsoft.ACE.OLEDB.12.0”提供程序。 (System.Data)
    SQL常用内置函数
    SQL常用语句
    关于网页中鼠标双击文字选中设置
    SQL数据库查询列的类型及长度
    ASP. NET MVC项目 使用iTextSharp将网页代码生成PDF文件
    eslint-config-airbnb vs prettier vs standard
    windows批处理(bat脚本)
    python日志库loguru
  • 原文地址:https://www.cnblogs.com/jhz033/p/6491440.html
Copyright © 2011-2022 走看看