zoukankan      html  css  js  c++  java
  • hdu 3836 Equivalent Sets trajan缩点

    Equivalent Sets

    Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Others)



    Problem Description
    To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.
    You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
    Now you want to know the minimum steps needed to get the problem proved.
     
    Input
    The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.
    Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
     
    Output
    For each case, output a single integer: the minimum steps needed.
     
    Sample Input
    4 0 3 2 1 2 1 3
     
    Sample Output
    4 2
    Hint
    Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.
     
    Source

    题意:给你n个点,m条边的有向图,最少加几条边使得改图为强连通;

    思路:对于一个缩完点的图,要使得其强连通,入度和出度都至少为1;

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<set>
    #include<map>
    #include<stdlib.h>
    #include<time.h>
    using namespace std;
    #define LL long long
    #define pi (4*atan(1.0))
    #define eps 1e-6
    #define bug(x)  cout<<"bug"<<x<<endl;
    const int N=1e5+10,M=1e6+10,inf=1e9+10;
    const LL INF=5e17+10,mod=1e9+7;
    
    struct is
    {
        int u,v;
        int next;
    }edge[50010];
    int head[50010];
    int belong[50010];
    int dfn[50010];
    int low[50010];
    int stackk[50010];
    int instack[50010];
    int number[50010];
    int in[N],out[N];
    int n,m,jiedge,lu,bel,top;
    void update(int u,int v)
    {
        jiedge++;
        edge[jiedge].u=u;
        edge[jiedge].v=v;
        edge[jiedge].next=head[u];
        head[u]=jiedge;
    }
    void dfs(int x)
    {
        dfn[x]=low[x]=++lu;
        stackk[++top]=x;
        instack[x]=1;
        for(int i=head[x];i;i=edge[i].next)
        {
            if(!dfn[edge[i].v])
            {
                dfs(edge[i].v);
                low[x]=min(low[x],low[edge[i].v]);
            }
            else if(instack[edge[i].v])
            low[x]=min(low[x],dfn[edge[i].v]);
        }
        if(low[x]==dfn[x])
        {
            int sum=0;
            bel++;
            int ne;
            do
            {
                sum++;
                ne=stackk[top--];
                belong[ne]=bel;
                instack[ne]=0;
            }while(x!=ne);
            number[bel]=sum;
        }
    }
    void tarjan()
    {
        memset(dfn,0,sizeof(dfn));
        bel=lu=top=0;
        for(int i=1;i<=n;i++)
        if(!dfn[i])
        dfs(i);
    }
    int main()
    {
        int i,t;
        while(~scanf("%d%d",&n,&m))
        {
            memset(in,0,sizeof(in));
            memset(out,0,sizeof(out));
            memset(head,0,sizeof(head));
            jiedge=0;
            for(i=1;i<=m;i++)
            {
                int u,v;
                scanf("%d%d",&u,&v);
                update(u,v);
            }
            tarjan();
            int x=0;
            int z=0;
            for(i=1;i<=jiedge;i++)
            if(belong[edge[i].v]!=belong[edge[i].u])
            {
                if(!out[belong[edge[i].u]])x++;
                if(!in[belong[edge[i].v]])z++;
                out[belong[edge[i].u]]++;
                in[belong[edge[i].v]]++;
            }
            x=bel-x;
            z=bel-z;
            if(bel==1)
                printf("0
    ");
            else
                printf("%d
    ",max(x,z));
        }
        return 0;
    }
  • 相关阅读:
    懒加载——实现原理
    html5shiv.js和respond.min.js
    点击app分享链接,js判断手机是否安装某款app,有就尝试打开,没有就下载
    ajax获取后台数据渲染(整片文章不分段落)解决方案,要使用htmL方式输出
    +-下拉菜单
    html 中a标签的问题(无反应,跳转,调用方法)
    js中两种定时器,setTimeout和setInterval的区别
    chrome 调试进入 paused in debugger 状态解决办法
    mybatis-plus 获取新增id
    linux unzip和zip
  • 原文地址:https://www.cnblogs.com/jhz033/p/6937124.html
Copyright © 2011-2022 走看看