zoukankan      html  css  js  c++  java
  • 机器学习-输出一颗树

    '''
    Created on Oct 14, 2010
    
    @author: Peter Harrington
    '''
    import matplotlib.pyplot as plt
    
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")
    leafNode = dict(boxstyle="round4", fc="0.8")
    arrow_args = dict(arrowstyle="<-")
    #注解树,获取叶子节点的数量
    def getNumLeafs(myTree):
        numLeafs = 0
        # 获得myTree的第一个键值,即第一个特征,分割的标签
        firstStr = list(myTree.keys())[0]
        # 根据键值得到对应的值,即根据第一个特征分类的结果 
        secondDict = myTree[firstStr]
        # 遍历得到的secondDict 
        for key in secondDict.keys():
            # 如果secondDict[key]为一个字典,即决策树结点
            if type(secondDict[key]).__name__=='dict':#注意Python中是如果判断变量类型的
                # 则递归的计算secondDict中的叶子结点数,并加到numLeafs上
                numLeafs += getNumLeafs(secondDict[key])
            else:   numLeafs +=1#叶子节点的话就将计数器加1
        return numLeafs#返回计数器结果
    #注解树,获取树的层数
    def getTreeDepth(myTree):
        maxDepth = 0
        firstStr = list(myTree.keys())[0]
        secondDict = myTree[firstStr]
        for key in secondDict.keys():#要判断深度就需要对每一个支都遍历、找到最长的那个了
            if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
                thisDepth = 1 + getTreeDepth(secondDict[key])
            else:   thisDepth = 1
            if thisDepth > maxDepth: maxDepth = thisDepth#选最大的
        return maxDepth
    
    def plotNode(nodeTxt, centerPt, parentPt, nodeType):
        createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
                 xytext=centerPt, textcoords='axes fraction',
                 va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )
        
    def plotMidText(cntrPt, parentPt, txtString):
        xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
        yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
        createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
    
    def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
        numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree
        depth = getTreeDepth(myTree)
        firstStr = list(myTree.keys())[0]     #the text label for this node should be this
        cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
        plotMidText(cntrPt, parentPt, nodeTxt)
        plotNode(firstStr, cntrPt, parentPt, decisionNode)
        secondDict = myTree[firstStr]
        plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
        for key in secondDict.keys():
            if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes   
                plotTree(secondDict[key],cntrPt,str(key))        #recursion
            else:   #it's a leaf node print the leaf node
                plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
                plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
                plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
        plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
    #if you do get a dictonary you know it's a tree, and the first element will be another dict
    
    def createPlot(inTree):
        fig = plt.figure(1, facecolor='white')
        fig.clf()
        axprops = dict(xticks=[], yticks=[])
        createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
        #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
        plotTree.totalW = float(getNumLeafs(inTree))
        plotTree.totalD = float(getTreeDepth(inTree))
        plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
        plotTree(inTree, (0.5,1.0), '')
        plt.show()
    
    #def createPlot():
    #    fig = plt.figure(1, facecolor='white')
    #    fig.clf()
    #    createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
    #    plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
    #    plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
    #    plt.show()
    
    def retrieveTree(i):
        listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
                      {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                      ]
        return listOfTrees[i]
    
    createPlot(thisTree)
    
  • 相关阅读:
    USB 描述符详细解析,来自老外网站,比协议描述清晰
    linux那些事儿之我是usb
    usb开源项目
    Quartus II 增量编译
    Quartus II 与 Modelsim 联调【转】
    Matlab语法
    RC上电复位时间计算
    Quartus 编译错误
    UltraEdit 所有快捷键 说明
    [转载]BT656/BT601/BT1120协议
  • 原文地址:https://www.cnblogs.com/jiading/p/11624079.html
Copyright © 2011-2022 走看看