zoukankan      html  css  js  c++  java
  • poj 2773 Happy 2006解题报告 <欧拉函数>

    链接:http://poj.org/problem?id=2773

    Description

    Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are all relatively prime to 2006.

    Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.

    Input

    The input contains multiple test cases. For each test case, it contains two integers m (1 <= m <= 1000000), K (1 <= K <= 100000000).

    Output

    Output the K-th element in a single line.

    Sample Input

    2006 1
    2006 2
    2006 3
    

    Sample Output

    1
    3
    5
    
    题意:输入 M K 求第 K 个与 M 互素的数
    思路:因为 gcd( a, b ) == gcd( a+k*b, b ), 所以可以先用欧拉函数求出 M 内所有与 M 互素的数的个数再暴力搜索
    欧拉函数:http://www.cnblogs.com/jian1573/archive/2012/02/24/2366953.html
    代码:
     1 #include <stdio.h>
    2 #include <string.h>
    3 int gcd( int a, int b )
    4 {
    5 return b==0?a:gcd( b, a%b );
    6 }
    7
    8 int Eular( int a )
    9 {
    10 int l=1;
    11 for( int i=2; i*i<=a; ++i )
    12 {
    13 if( a%i==0 )
    14 {
    15 l *= ( i-1 );
    16 a /= i;
    17 while( a%i==0 )
    18 {
    19 l *= i;
    20 a /= i;
    21 }
    22 }
    23 }
    24 if( a>1 )
    25 l*=(a-1);
    26 return l;
    27 }
    28
    29 int main( )
    30 {
    31 int M, K;
    32 while( scanf( "%d%d", &M, &K ) != EOF )
    33 {
    34 if( M==1 )
    35 {
    36 printf("%d\n", K );
    37 continue;
    38 }
    39 int k=Eular(M);
    40 int t=K%k;
    41 if( t )
    42 {
    43 int n=0;
    44 for( int i=1; ;++i )
    45 {
    46 if( gcd( M, i )==1 )
    47 {
    48 n++;
    49 }
    50 if( n==t )
    51 {
    52 printf( "%d\n",K/k*M+i );
    53 break;
    54 }
    55 }
    56 }
    57 else
    58 {
    59 printf("%d\n", (K/k)*M-1 );
    60 }
    61 }
    62 return 0;
    63 }
     


  • 相关阅读:
    vue中点击输入框弹出事件
    shiro
    Java转Kotlin
    RxJava2详细攻略(四)
    RxJava2详细攻略(三)
    RxJava2详细攻略(二)
    RxJava2详细攻略(一)
    DataBinding使用介绍
    类集框架
    使用CrashHandler获取应用crash信息
  • 原文地址:https://www.cnblogs.com/jian1573/p/2367139.html
Copyright © 2011-2022 走看看