zoukankan      html  css  js  c++  java
  • 微积分学习笔记二

    1、罗尔中值定理:设函数y=f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),那么在(a,b)内至少存在一点ξ,使得

    [f^{^{'}}left (varepsilon ight )=0]

    证明:因为连续,所以在[a,b]上存在最大最小值,设为M,m。

    (1)若M=m,则f(x)为定值,所以导数恒为0。

    (2)否则,由于f(a)=f(b),所以M和m不可能都在端点处取得。设f(c)=M,c∈(a,b)。因为f(c)=M是最大值,所以对$Delta x eq 0$有

    [fleft(c+Delta x ight )-fleft(c ight )leq 0,c+Delta x in left(a,b ight )]

    所以,当$Delta x>0$时,

    [frac{fleft(c+Delta x ight )-fleft(c ight )}{Delta x}leq0]

    因为导数存在,所以

    [f^{^{'}}left(c ight )=lim_{Delta x ightarrow 0^{^{+}}}frac{fleft(c+Delta x ight )-fleft(c ight )}{Delta x}leq0]

    同理$Delta x<0$时

    [f^{^{'}}left(c ight )=lim_{Delta x ightarrow 0^{^{-}}}frac{fleft(c+Delta x ight )-fleft(c ight )}{Delta x}geq 0]

    所以$f^{^{'}}left(c ight )=0$。因此可取ξ=c。


    2、拉格朗日中值定理:设函数f(x)在[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点ξ,满足

    [f^{^{'}}left(xi ight )=frac{fleft(b ight )-fleft(a ight )}{b-a}]

    证明:定义函数$varphi (x)$,

    $varphi left(x ight )=fleft(x ight )-[fleft(a ight )+frac{f(b)-f(a)}{b-a}(x-a) ]$


    那么有$varphi (a)$=$varphi (b)$=0,由罗尔定理,(a,b)存在一点ξ使得$varphi^{^{'}} left(xi ight )=0$,即


    [varphi^{^{'}} left(xi ight )=f^{^{'}}left(xi ight )-frac{fleft(b ight )-fleft(a ight )}{b-a}=0]

    所以[f^{^{'}}left(xi ight )=frac{fleft(b ight )-fleft(a ight )}{b-a}]

    3、柯西中值定理:设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且$g^{^{'}}left(x ight ) eq0 (a<x<b)$,则在(a,b)内存在一点ξ,满足

    [frac{fleft(b ight )-fleft(a ight )}{gleft(b ight )-gleft(a ight )}=frac{f^{^{'}}left(xi ight )}{g^{^{'}}left(xi ight )},xiin(a,b)]

    证明:由于$g^{^{'}}left(x ight ) eq0(a<x<b )$,所以g(a)!=g(b)。否则与罗尔定理矛盾。定义函数$varphi (x)$,

    $varphi (x)=f(x)-[fleft(a ight )+frac{fleft(b ight )-fleft(a ight )}{gleft(b ight )-gleft(a ight )} [g(x)-g(a) ]]$


    由于$varphi (a)$=$varphi (b)$=0,所以根据罗尔定理,在(a,b)内存在ξ,使得

    [varphi^{^{'}} left(xi ight )=f^{^{'}}left(xi ight )-frac{fleft(b ight )-fleft(a ight )}{gleft(b ight )-gleft(a ight )}g^{^{'}}left(xi ight )=0]



    [frac{fleft(b ight )-fleft(a ight )}{gleft(b ight )-gleft(a ight )}=frac{f^{^{'}}left(xi ight )}{g^{^{'}}left(xi ight )},xiin(a,b)]

    4、洛必达法则1:设函数f(x),g(x)满足条件:

    $(1)lim_{x ightarrow a }fleft(x ight )=0,lim_{x ightarrow a }gleft(x ight )=0$

    (2)在点a的某邻域内(a可除外)可导,且$g^{^{'}}left(x ight ) eq0$

    $(3)lim_{x ightarrow a}frac{f^{^{'}}left(x ight )}{g^{^{'}}left(x ight )}=A$(或者oo)

    那么

    $lim_{x ightarrow a}frac{fleft(x ight )}{gleft(x ight )}=lim_{x ightarrow a}frac{f^{^{'}}left(x ight )}{g^{^{'}}left(x ight )}=A$(或者oo)

    证明:若f(x) 和g(x)在a处连续,那么f(a)=g(a)=0,否则我们可以人为定义f(a)=g(a)=0,使得f(x)和g(x)在a处连续。设x为a附近一点,那么在以x和a为端点的区间上,f(x)和g(x)满足柯西中值定理,所以在(x,a)之间存在ξ,使得

    [frac{fleft(x ight )}{gleft(x ight )}=frac{fleft(x ight )-fleft(a ight )}{gleft(x ight )-gleft(a ight )}=frac{f^{^{'}}left(xi ight )}{g^{^{'}}left(xi ight )},xiin(x,a)]

    所以当x->a时,ξ->a,求极限得:

    $lim_{x ightarrow a}frac{fleft(x ight )}{gleft(x ight )}=lim_{xi ightarrow a}frac{f^{^{'}}left(xi ight )}{g^{^{'}}left(xi ight )}=lim_{x ightarrow a}frac{f^{^{'}}left(x ight )}{g^{^{'}}left(x ight )}$

    5、洛必达法则2:设函数f(x),g(x)满足条件:

    $(1)lim_{x ightarrow a }fleft(x ight )=oo,lim_{x ightarrow a }gleft(x ight )=oo$

    (2)在点a的某邻域内(a可除外)可导,且$g^{^{'}}left(x ight ) eq0$

    $(3)lim_{x ightarrow a}frac{f^{^{'}}left(x ight )}{g^{^{'}}left(x ight )}=A$(或者oo)

    那么

    $lim_{x ightarrow a}frac{fleft(x ight )}{gleft(x ight )}=lim_{x ightarrow a}frac{f^{^{'}}left(x ight )}{g^{^{'}}left(x ight )}=A$(或者oo)


  • 相关阅读:
    初识MySQL
    正则表达式
    多线程
    多进程
    Python基础--模块
    Python基础--异常
    Python基础--面向对象
    Python基础--文件操作
    Python基础--函数
    python3 日期时间差计算
  • 原文地址:https://www.cnblogs.com/jianglangcaijin/p/6035842.html
Copyright © 2011-2022 走看看