zoukankan      html  css  js  c++  java
  • topcoder srm 713 div1

    problem1 link

    如果$a^{b}=c^{d}$,那么一定存在$t,x,y$使得$a=t^{x},c=t^{y}$。一旦$t,x,y$确定,那么可以直接计算出二元组$b,d$有多少。对于$t$,若$t>sqrt{n}$,那么$x=y=1$。若$tleq sqrt{n}$那么$x,y$的值不会超过30,暴力枚举即可

    problem2 link

    令$f[mask][v]$表示已经遍历了状态$mask$,现在在节点$v$ 时可以遍历到的节点状态。$dp[mask][v]$表示遍历了状态$mask$现在在$v$时遍历完所有节点的方案数,那么有$dp[mask][v]=sum_{tin v_{adj}}dp[mask|1<<t][t]*dp[f[mask|1<<t][t]][v]$

    problem3 link

    设$m$是$w$中的最大值。

    设$f[i]$表示重量是$i$的最大价值。那么$f[i]=max(f[i-w_{t}]+v_{t})$.这里还要计算种类的个数,可以定义$left (value,total  ight )$。然后需要重新定义加法和乘法。

    由于询问的重量的值很大,可以用矩阵幂来加速。这里的重点是矩阵$M$的$k$次方,只维护连续的$m+1$个重量,即$f[k-m],f[k-(m-1)],..,f[k-2],f[k-1],f[k]$。

    所以对于询问$q$来说,只需要计算$M^{q}$即可。这里可以预处理出$M,M^{2},M^{4},M^{8},M^{16}$等以加速运算

    $w=(2,3),v=(20,30)$时得到的转移矩阵$M$如下。其中$N$代表无效的转移

    $egin{bmatrix}N & N & N & N\ (0,1) & N & N &(30,1) \ N & (0,1) & N & (20,1)\ N & N & (0,1) &N end{bmatrix}$

    假设计算的$q=6$,那么初始为$left (f[-3],f[-2],f[-1],f[0]  ight )=left (N,N,N,(0,1)  ight )$,表示重量为0的价值为0,有一种情况

    $left (f[-3],f[-2],f[-1],f[0]  ight )*M=left (f[-2],f[-1],f[0],f[1]  ight )=left (N,N,(0,1),N  ight )$,表示重量为0的价值为0,有一种情况

    $left (f[-2],f[-1],f[0],f[1]  ight )*M=left (f[-1],f[0],f[1],f[2]  ight )=left (N,(0,1),N,(20,1)  ight )$,表示重量为0的价值为0,有一种情况,重量为2的最大价值为20,有一种情况

    继续下去可以得到:

    $left (f[-1],f[0],f[1],f[2]  ight )*M=left (f[0],f[1],f[2],f[3]  ight )=left ((0,1),N,(20,1) ,(30,1) ight )$

    $left (f[0],f[1],f[2],f[3]  ight )*M=left (f[1],f[2],f[3],f[4]  ight )=left ((0,1),(20,1) ,(30,1),(40,1) ight )$

    $left (f[1],f[2],f[3],f[4]  ight )*M=left (f[2],f[3],f[4],f[5]  ight )=left ((20,1) ,(30,1),(40,1),(50,2) ight )$

    $left (f[2],f[3],f[4],f[5]  ight )*M=left (f[3],f[4],f[5],f[6]  ight )=left ((30,1),(40,1),(50,2),(60,2) ight )$ 所以重量为6的最大价值为60,有2种情况

    code for problem1

    #include <cmath>
    #include <set>
    
    class PowerEquation {
      static constexpr int kMod = 1000000007;
    
      int Gcd(int x, int y) { return y == 0 ? x : Gcd(y, x % y); }
    
      int Get(int x, int y, int n) {
        int t = Gcd(x, y);
        x /= t;
        y /= t;
        if (x == y) {
          return n;
        }
        return n / std::max(x, y);
      }
    
     public:
      int count(int n) {
        long long result = 1ll * n * n % kMod;
    
        int sq = static_cast<int>(std::sqrt(n) + 1);
    
        std::set<std::pair<int, int>> S;
        for (int t = 2; t * t <= n; ++t) {
          long long a = 1;
          for (int x = 1; a * t <= n; ++x) {
            a *= t;
            long long b = 1;
            for (int y = 1; b * t <= n; ++y) {
              b *= t;
              if (S.count({a, b}) > 0) {
                continue;
              }
              S.insert({a, b});
              if (a == b && a >= sq) {
                result -= n;
              }
              result += Get(x, y, n);
              result %= kMod;
            }
          }
        }
        result += 1ll * (n - sq + 1) * n % kMod;
        return static_cast<int>(result % kMod);
      }
    };

    code for problem2

    #include <string>
    #include <vector>
    
    class DFSCount {
     public:
      long long count(const std::vector<std::string> &G) {
        int n = static_cast<int>(G.size());
        g.resize(n);
        for (int i = 0; i < n; ++i) {
          for (int j = 0; j < n; ++j) {
            if (G[i][j] == 'Y') {
              g[i].push_back(j);
            }
          }
        }
    
        f.resize(1 << n);
        for (int i = 0; i < (1 << n); ++i) {
          f[i].resize(n);
        }
        for (int i = 0; i < (1 << n); ++i) {
          for (int j = 0; j < n; ++j) {
            if (0 != (i & (1 << j))) {
              f[i][j] = Dfs(i, j);
            }
          }
        }
        dp.resize(1 << n);
        for (int i = 0; i < (1 << n); ++i) {
          dp[i].resize(n, -1);
        }
        long long ans = 0;
        for (int i = 0; i < n; ++i) {
          ans += DFS(1 << i, i);
        }
        return ans;
      }
    
     private:
      int Dfs(int mask, int v) {
        if (f[mask][v] != 0) {
          return f[mask][v];
        }
        f[mask][v] = mask;
        for (int t : g[v]) {
          if (0 == (mask & (1 << t))) {
            f[mask][v] |= Dfs(mask | (1 << t), t);
          }
        }
        return f[mask][v];
      }
    
      long long DFS(int mask, int v) {
        if (f[mask][v] == mask) {
          return 1;
        }
        if (dp[mask][v] != -1) {
          return dp[mask][v];
        }
        dp[mask][v] = 0;
        for (int t : g[v]) {
          if (0 == (mask & (1 << t))) {
            int new_mask = mask | (1 << t);
            long long x = DFS(new_mask, t);
            long long y = DFS(f[new_mask][t], v);
            dp[mask][v] += x * y;
          }
        }
        return dp[mask][v];
      }
    
      std::vector<std::vector<int>> g;
      std::vector<std::vector<int>> f;
      std::vector<std::vector<long long>> dp;
    };

    code for problem3

    #include <algorithm>
    #include <vector>
    
    class CoinsQuery {
      static constexpr int kMod = 1000000007;
      struct Node {
        long long value = 0;
        long long total = 0;
    
        Node() = default;
        Node(long long value, long long total) : value(value), total(total) {}
    
        bool Valid() const { return value != -1; }
    
        Node operator+(const Node &other) const {
          if (!Valid()) {
            return other;
          }
          if (!other.Valid()) {
            return *this;
          }
          Node r;
          r.value = std::max(value, other.value);
          if (value == other.value) {
            r.total = (total + other.total) % kMod;
          } else if (value > other.value) {
            r.total = total;
          } else {
            r.total = other.total;
          }
          return r;
        }
    
        Node operator*(const Node &other) const {
          if (!Valid() || !other.Valid()) {
            return Node(-1, 0);
          }
          Node r;
          r.value = value + other.value;
          r.total = total * other.total % kMod;
          return r;
        }
      };
    
      struct Matrix {
        int n = 0;
        int m = 0;
        std::vector<std::vector<Node>> mat;
        Matrix(int n = 0, int m = 0) : n(n), m(m) {
          mat.resize(n);
          for (int i = 0; i < n; ++i) {
            mat[i].resize(m);
            for (int j = 0; j < m; ++j) {
              mat[i][j].value = -1;
              mat[i][j].total = 0;
            }
          }
        }
    
        Matrix operator*(const Matrix &other) const {
          int n = this->n;
          int m = this->m;
          int r = other.m;
          Matrix result(n, r);
          for (int i = 0; i < n; ++i) {
            for (int j = 0; j < r; ++j) {
              for (int k = 0; k < m; ++k) {
                result.mat[i][j] = result.mat[i][j] + mat[i][k] * other.mat[k][j];
              }
            }
          }
          return result;
        }
      };
    
     public:
      std::vector<long long> query(const std::vector<int> &w,
                                   const std::vector<int> &v,
                                   const std::vector<int> &query) {
        int n = static_cast<int>(w.size());
        constexpr int kMax = 30;
        std::vector<Matrix> all(kMax);
        int m = *std::max_element(w.begin(), w.end());
        all[0] = Matrix(m + 1, m + 1);
        for (int i = 0; i < n; ++i) {
          all[0].mat[m - w[i] + 1][m] = all[0].mat[m - w[i] + 1][m] + Node(v[i], 1);
        }
    
        for (int i = 0; i < m; ++i) {
          all[0].mat[i + 1][i] = all[0].mat[i + 1][i] + Node(0, 1);
        }
    
        for (int i = 1; i < kMax; ++i) {
          all[i] = all[i - 1] * all[i - 1];
        }
        std::vector<long long> result;
        for (int q : query) {
          Matrix i(1, m + 1);
          i.mat[0][m] = Node(0, 1);
          for (int j = 0; j < kMax; ++j) {
            if ((q & (1 << j)) != 0) {
              i = i * all[j];
            }
          }
          if (!i.mat[0][m].Valid()) {
            result.push_back(-1);
            result.push_back(-1);
          } else {
            result.push_back(i.mat[0][m].value);
            result.push_back(i.mat[0][m].total);
          }
        }
        return result;
      }
    };

    参考:

    https://blog.csdn.net/samjia2000/article/details/73549791

     

  • 相关阅读:
    Chromium(Chrome) frame structure detail
    Chromium(Chrome) Sandbox Details
    ECMA6 New Features
    Asynchronous programming in javascript
    Restful OData Protocol
    java 历年版本特征(简化)
    λ 演算学习
    远程访问其他主机的Mysql(Ubuntu)
    NoSQL基础学习
    Apache solr 6.6.0安装
  • 原文地址:https://www.cnblogs.com/jianglangcaijin/p/6845389.html
Copyright © 2011-2022 走看看