zoukankan      html  css  js  c++  java
  • topcoder srm 335 div1

    problem1 link

    直接模拟即可。

    import java.util.*;
    import java.math.*;
    import static java.lang.Math.*;
    
    public class Multifactorial {
    	
    	public String calcMultiFact(int n, int k) {
    		long result=1;
    		final long nlimit=1000000000000000000l;
    		while(true) {
    
    			if(result>nlimit/n) {
    				return "overflow";
    			}
    			result*=n;
    			if(n<=k) {
    				break;
    			}
    			n-=k;
    		}
    		return Long.toString(result);
    	}
    }

    problem2 link

    记录到达$(x,y)$的步数以及当前新一步的和,dp即可。

    import java.util.*;
    import java.math.*;
    import static java.lang.Math.*;
    
    public class ExpensiveTravel {
    
    	static class Fraction {
    		public int a,b;
    		public Fraction() {
    			a=1;
    			b=1;
    		}
    		public Fraction(int a,int b) {
    			this.a=a;
    			this.b=b;
    		}
    
    
    		public static int gcd(int x,int y) {
    			if(y==0) {
    				return x;
    			}
    			return gcd(y,x%y);
    		}
    
    		private Fraction simple() {
    			int t=gcd(a,b);
    			a/=t;
    			b/=t;
    			return this;
    		}
    
    		public Fraction add(Fraction p) {
    			int bb=p.b*b;
    			int aa=a*p.b+p.a*b;
    			return new Fraction(aa,bb).simple();
    		}
    		public boolean ok() {
    			return a>b;
    		}
    
    		public boolean less(Fraction p) {
    			return a*p.b<p.a*b;
    		}
    	}
    
    	static class Node {
    		public Fraction pref;
    		public Fraction f;
    		public int cost;
    		public boolean inq;
    
    		public Node() {
    			f=new Fraction(0,1);
    			cost=0;
    			inq=false;
    		}
    
    		Node add(int t) {
    			Node p=new Node();
    			p.f=new Fraction(f.a,f.b).add(new Fraction(1,t));
    			p.cost=cost;
    			p.inq=inq;
    
    			if(p.f.ok()) {
    				++p.cost;
    				p.f=pref.add(new Fraction(1,t));
    			}
    			p.pref=new Fraction(1,t);
    			return p;
    		}
    
    		public boolean less(Node p) {
    			return cost<p.cost||cost==p.cost&&f.less(p.f);
    		}
    
    		public int result() {
    			if(cost==-1) {
    				return -1;
    			}
    			return cost+1;
    		}
    
    	}
    	
    	public int minTime(String[] m, int startRow, int startCol, int endRow, int endCol) {
    		final int N=m.length;
    		final int M=m[0].length();
    		int[][] g=new int[N][M];
    		for(int i=0;i<N;++i) {
    			for(int j=0;j<M;++j) {
    				char c=m[i].charAt(j);
    				g[i][j]=c-'0';
    			}
    		}
    		--startRow;
    		--startCol;
    		--endRow;
    		--endCol;
    		if(g[startRow][startCol]==1||g[endRow][endCol]==1) {
    			return -1;
    		}
    
    		Node[][] f=new Node[N][];
    		for(int i=0;i<N;++i) {
    			f[i]=new Node[M];
    			for(int j=0;j<M;++j) {
    				f[i][j]=new Node();
    				f[i][j].cost=-1;
    			}
    		}
    
    		Queue<Integer> queue=new LinkedList<>();
    		f[startRow][startCol].f=new Fraction(1,g[startRow][startCol]);
    		f[startRow][startCol].pref=new Fraction(1,g[startRow][startCol]);
    		f[startRow][startCol].inq=true;
    		f[startRow][startCol].cost=0;
    		queue.offer(startRow*100+startCol);
    
    		final int[] dx={0,0,1,-1};
    		final int[] dy={1,-1,0,0};
    
    		while(!queue.isEmpty()) {
    			final int x=queue.peek()/100;
    			final int y=queue.peek()%100;
    			queue.poll();
    			f[x][y].inq=false;
    			if(x==endRow&&y==endCol) {
    				continue;
    			}
    			for(int i=0;i<4;++i) {
    				final int xx=x+dx[i];
    				final int yy=y+dy[i];
    				if(xx<0||xx>=N||yy<0||yy>=M) {
    					continue;
    				}
    				if(g[xx][yy]==1) {
    					continue;
    				}
    				Node t=f[x][y].add(g[xx][yy]);
    				if(f[xx][yy].cost==-1||t.less(f[xx][yy])) {
    					f[xx][yy]=t;
    					if(!f[xx][yy].inq) {
    						f[xx][yy].inq=true;
    						queue.offer(xx*100+yy);
    					}
    				}
    			}
    		}
    		return f[endRow][endCol].result();
    	}
    }

    problem3 link

    根据期望的可加性,A组中每个数$x$比B组中每个小于$x$的值$y$的贡献值$frac{(x-y)^{2}}{n}$为正,对于每个大于$x$的值$z$的贡献值$frac{(x-z)^{2}}{n}$为负。

    import java.util.*;
    import java.math.*;
    import static java.lang.Math.*;
    
    public class RandomFights {
    
    
    	int[] get(int[] X,int n) {
    		final int m=X.length;
    		int j=0;
    		int[] R=new int[n];
    		for(int i=0;i<n;++i) {
    			R[i]=X[j];
    			int s=(j+1)%m;
    			X[j]=((X[j]^X[s])+13)%49999;
    			j=s;
    		}
    		return R;
    	}
    
    
    	BigInteger int2big(long x) {
    		return new BigInteger(Long.toString(x));
    	}
    
    
    	public double expectedNrOfPoints(int[] A,int[] B,int n) {
    		int[] a=get(A,n);
    		int[] b=get(B,n);
    
    		Arrays.sort(a);
    		Arrays.sort(b);
    
    
    		BigInteger nxt=BigInteger.ZERO,nxt2=BigInteger.ZERO;
    		for(int i=0;i<n;++i) {
    			nxt=nxt.add(int2big(b[i]));
    			nxt2=nxt2.add(int2big((long)b[i]*b[i]));
    		}
    
    		BigInteger result=BigInteger.ZERO;
    		BigInteger pre=BigInteger.ZERO,pre2=BigInteger.ZERO;
    		int k=0;
    		for(int i=0;i<n;++i) {
    			while(k<n&&b[k]<=a[i]) {
    				pre=pre.add(int2big(b[k]));
    				pre2=pre2.add(int2big((long)b[k]*b[k]));
    				nxt=nxt.subtract(int2big(b[k]));
    				nxt2=nxt2.subtract(int2big((long)b[k]*b[k]));
    				++k;
    			}
    
    			BigInteger tmp=int2big((long)k*a[i]*a[i]).subtract(pre.multiply(int2big(a[i]*2))).add(pre2);
    			result=result.add(tmp);
    			tmp=int2big((long)(n-k)*a[i]*a[i]).subtract(nxt.multiply(int2big(a[i]*2))).add(nxt2);
    			result=result.subtract(tmp);
    
    		}
    		BigInteger[] last=result.divideAndRemainder(int2big(n));
    		return Double.valueOf(last[0].toString())+Double.valueOf(last[1].toString())/n;
    	}
    }
    

      

  • 相关阅读:
    启明星门户网站Portal发布V4.5,并兼论部分功能的实现
    修改SQL数据库dbo所有者
    iphone& android 开发指南 http://mobile.tutsplus.com
    启明星会议室预定系统V5.0.0.0版本说明
    启明星Portal企业内部网站V4.3版 附演示地址 http://demo.dotnetcms.org
    在winform程序里实现最小化隐藏到windows右下角
    【门户网站】启明星Portal系统里,关于天气预报调用的说明
    获取客户端经纬度坐标
    修改表名或者列名SQL
    ER图
  • 原文地址:https://www.cnblogs.com/jianglangcaijin/p/7436366.html
Copyright © 2011-2022 走看看