zoukankan      html  css  js  c++  java
  • 350

     Pseudo-Random Numbers 

    Computers normally cannot generate really random numbers, but frequently are used to generate sequences of pseudo-random numbers. These are generated by some algorithm, but appear for all practical purposes to be really random. Random numbers are used in many applications, including simulation.

     

    A common pseudo-random number generation technique is called the linear congruential method. If the last pseudo-random number generated was L, then the next number is generated by evaluating ( tex2html_wrap_inline32 , where Z is a constant multiplier, I is a constant increment, and M is a constant modulus. For example, suppose Z is 7, I is 5, and M is 12. If the first random number (usually called the seed) is 4, then we can determine the next few pseudo-random numbers are follows:

     

    tabular21

     

    As you can see, the sequence of pseudo-random numbers generated by this technique repeats after six numbers. It should be clear that the longest sequence that can be generated using this technique is limited by the modulus, M.

     

    In this problem you will be given sets of values for ZIM, and the seed, L. Each of these will have no more than four digits. For each such set of values you are to determine the length of the cycle of pseudo-random numbers that will be generated. But be careful: the cycle might not begin with the seed!

     

    Input

    Each input line will contain four integer values, in order, for ZIM, and L. The last line will contain four zeroes, and marks the end of the input data. L will be less than M.

     

    Output

    For each input line, display the case number (they are sequentially numbered, starting with 1) and the length of the sequence of pseudo-random numbers before the sequence is repeated.

     

    Sample Input

     

    7 5 12 4
    5173 3849 3279 1511
    9111 5309 6000 1234
    1079 2136 9999 1237
    0 0 0 0

     

    Sample Output

     

    Case 1: 6
    Case 2: 546
    Case 3: 500
    Case 4: 220
    #include<stdio.h>
    int main(void)
    {
    	int z,i,m,l[10005],count=0,f;
    	while(scanf("%d%d%d%d",&z,&i,&m,&l[0])==4)
    	{
    		if(!z&&!i&&!m&&!l[0]) break;
    		count++;
    		int t=0,j,k;  
    		while(1)
    		{
    			t++;
    			l[t]=(z*l[t-1]+i)%m;
    			for(j=0;j<t;j++)
    				if(l[t]==l[j]) 
    					goto print;
    		}
    print:	printf("Case %d: %d
    ",count,t-j);
    	}
    	return 0;
    }


  • 相关阅读:
    TortoiseGit日常使用指南
    Ajax在MVC中的应用
    STL源码学习内存管理
    功能最强大的.Net代码生成器——EasyCode
    TortoiseGit使用入门
    负载均衡时数据包流程详解
    C++异步编程 for VS2011
    (译)一个通用快速的反射方法调用
    移位运算
    使用Autofac在ASP.NET Web API上实现依赖注入
  • 原文地址:https://www.cnblogs.com/jiangu66/p/3165569.html
Copyright © 2011-2022 走看看