zoukankan      html  css  js  c++  java
  • poj3519 Lucky Coins Sequence矩阵快速幂

    Lucky Coins Sequence

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 608 Accepted Submission(s): 319

    Problem Description
    As we all know,every coin has two sides,with one side facing up and another side facing down.Now,We consider two coins's state is same if they both facing up or down.If we have N coins and put them in a line,all of us know that it will be 2^N different ways.We call a "N coins sequence" as a Lucky Coins Sequence only if there exists more than two continuous coins's state are same.How many different Lucky Coins Sequences exist?
     
    Input
    There will be sevaral test cases.For each test case,the first line is only a positive integer n,which means n coins put in a line.Also,n not exceed 10^9.
     
    Output
    You should output the ways of lucky coins sequences exist with n coins ,but the answer will be very large,so you just output the answer module 10007.
     
    Sample Input
    3 4
     
    Sample Output
    2 6
     
    Source
    分析题意,我们可以发现就是dp,怎么求递推公式呢?dp[i][j]表示,有i位长,j最后几位是相连的!

    dp[i][3]=dp[i-1][2];

    dp[i][2]=dp[i-1][1];

    dp[i][1]=dp[i-1][1]+dp[i-1][2];

    dp[1][1]=2;dp[1][2]=0;dp[1][3]=0;

    这样,我们就可以转化为矩阵求和了!

    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    using namespace std;
    #define mod 10007
    
    struct node {
       int  m[4][4];
        node operator *(node b) const//重载乘法
        {
            int i,j,k;
            node c;
            for(i=0;i<4;i++)
                for(j=0;j<4;j++)
                {
                    c.m[i][j]=0;
                    for(k=0;k<4;k++)
                    {
                        c.m[i][j]+=m[i][k]*b.m[k][j];
                        c.m[i][j]%=mod;//都要取模
                    }
                }
            return c;
        }
    };
    node original,result;
    void quickm(int n)
    {
        node a,b;
        b=original;a=result;
        while(n)
        {
            if(n&1)
            {
              b=b*a;
            }
            n=n>>1;
            a=a*a;
        }
        printf("%d
    ",2*b.m[0][3]%mod);
    }
    int main ()
    {
    
        int i,j,n;
        for(i=0;i<4;i++)
            for(j=0;j<4;j++)
            {
                original.m[i][j]=(i==j)?1:0;//初始化为单位矩阵
            }
        memset(result.m,0,sizeof(result.m));
        result.m[0][0]=result.m[0][1]=result.m[1][0]=result.m[1][2]=result.m[2][3]=1;
        result.m[3][3]=2;
        while(scanf("%d",&n)!=EOF)
        {
    
            quickm(n);
        }
        return 0;
    }
    


  • 相关阅读:
    算法题解:旋转数组的最小数字
    算法题解:连续子数组的最大和及其下标
    算法题解:快速排序算法(维基百科版)
    c++入门之类——进一步剖析
    c++入门之运算符重载
    c++入门之浅入浅出类——分享给很多想形象理解的人
    c++入门之再话内存和引用
    c++入门之引用
    c++入门之内置数组和array比较
    c++入门之结构体初步
  • 原文地址:https://www.cnblogs.com/jiangu66/p/3228847.html
Copyright © 2011-2022 走看看