zoukankan      html  css  js  c++  java
  • poj3519 Lucky Coins Sequence矩阵快速幂

    Lucky Coins Sequence

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 608 Accepted Submission(s): 319

    Problem Description
    As we all know,every coin has two sides,with one side facing up and another side facing down.Now,We consider two coins's state is same if they both facing up or down.If we have N coins and put them in a line,all of us know that it will be 2^N different ways.We call a "N coins sequence" as a Lucky Coins Sequence only if there exists more than two continuous coins's state are same.How many different Lucky Coins Sequences exist?
     
    Input
    There will be sevaral test cases.For each test case,the first line is only a positive integer n,which means n coins put in a line.Also,n not exceed 10^9.
     
    Output
    You should output the ways of lucky coins sequences exist with n coins ,but the answer will be very large,so you just output the answer module 10007.
     
    Sample Input
    3 4
     
    Sample Output
    2 6
     
    Source
    分析题意,我们可以发现就是dp,怎么求递推公式呢?dp[i][j]表示,有i位长,j最后几位是相连的!

    dp[i][3]=dp[i-1][2];

    dp[i][2]=dp[i-1][1];

    dp[i][1]=dp[i-1][1]+dp[i-1][2];

    dp[1][1]=2;dp[1][2]=0;dp[1][3]=0;

    这样,我们就可以转化为矩阵求和了!

    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    using namespace std;
    #define mod 10007
    
    struct node {
       int  m[4][4];
        node operator *(node b) const//重载乘法
        {
            int i,j,k;
            node c;
            for(i=0;i<4;i++)
                for(j=0;j<4;j++)
                {
                    c.m[i][j]=0;
                    for(k=0;k<4;k++)
                    {
                        c.m[i][j]+=m[i][k]*b.m[k][j];
                        c.m[i][j]%=mod;//都要取模
                    }
                }
            return c;
        }
    };
    node original,result;
    void quickm(int n)
    {
        node a,b;
        b=original;a=result;
        while(n)
        {
            if(n&1)
            {
              b=b*a;
            }
            n=n>>1;
            a=a*a;
        }
        printf("%d
    ",2*b.m[0][3]%mod);
    }
    int main ()
    {
    
        int i,j,n;
        for(i=0;i<4;i++)
            for(j=0;j<4;j++)
            {
                original.m[i][j]=(i==j)?1:0;//初始化为单位矩阵
            }
        memset(result.m,0,sizeof(result.m));
        result.m[0][0]=result.m[0][1]=result.m[1][0]=result.m[1][2]=result.m[2][3]=1;
        result.m[3][3]=2;
        while(scanf("%d",&n)!=EOF)
        {
    
            quickm(n);
        }
        return 0;
    }
    


  • 相关阅读:
    驱动控制浏览器 和排程算法
    Python简单人脸识别,可调摄像头,基础入门,先简单了解一下吧
    机器学习
    “一拖六”屏幕扩展实战
    Apple iMac性能基准测试
    IDC机房KVM应用案例分析
    突破极限 解决大硬盘上安装Unix新思路
    Domino系统从UNIX平台到windows平台的迁移及备份
    走进集装箱数据中心(附动画详解)
    企业实战之部署Solarwinds Network八部众
  • 原文地址:https://www.cnblogs.com/jiangu66/p/3228847.html
Copyright © 2011-2022 走看看