zoukankan      html  css  js  c++  java
  • uva 10054 The Necklace(欧拉回路)

    The Necklace 

    My little sister had a beautiful necklace made of colorful beads. Two successive beads in the necklace shared a common color at their meeting point. The figure below shows a segment of the necklace:

    But, alas! One day, the necklace was torn and the beads were all scattered over the floor. My sister did her best to recollect all the beads from the floor, but she is not sure whether she was able to collect all of them. Now, she has come to me for help. She wants to know whether it is possible to make a necklace using all the beads she has in the same way her original necklace was made and if so in which order the bids must be put.

    Please help me write a program to solve the problem.

    Input 

    The input contains T test cases. The first line of the input contains the integer T.

    The first line of each test case contains an integer N ( $5 leN le 1000$) giving the number of beads my sister was able to collect. Each of the next N lines contains two integers describing the colors of a bead. Colors are represented by integers ranging from 1 to 50.

     

    Output 

    For each test case in the input first output the test case number as shown in the sample output. Then if you apprehend that some beads may be lost just print the sentence ``some beads may be lost" on a line by itself. Otherwise, print N lines with a single bead description on each line. Each bead description consists of two integers giving the colors of its two ends. For $1 le i le N ­ 1$, the second integer on line i must be the same as the first integer on line i + 1. Additionally, the second integer on line N must be equal to the first integer on line 1. Since there are many solutions, any one of them is acceptable.

    Print a blank line between two successive test cases.

     

    Sample Input 

    2
    5
    1 2
    2 3
    3 4
    4 5
    5 6
    5
    2 1
    2 2
    3 4
    3 1
    2 4
    

    Sample Output 

    Case #1
    some beads may be lost
     
    Case #2
    2 1
    1 3
    3 4
    4 2
    2 2

    题目大意:给出一堆珠子,每个珠子有两个颜色,要求判断所给出的珠子是否能连成一个环状的项链。(可以的话要输出)

    解题思路:典型的欧拉回路问题,满足1、所有点的入度要等于出度;

    2、所有点的联通(这道题目数据没有卡这里)

    输出的时候要注意点的自身形成一个环

    比如:

    1 -> 2

    2  -> 3

    3 -> 1

    2 -> 4

    4 -> 2

    欧拉回路需要逆序输出。

    #include<stdio.h>
    #include<string.h>
    #define M 52
    int num[M];
    int map[M][M];
    int n;
    
    int get_fa(int x){
    	return num[x] != x?get_fa(num[x]):x;}
    
    void print(int k){
    	for (int i = 0; i < M; i++)
    		if (map[k][i]){
    			map[k][i]--;
    			map[i][k]--;
    			print(i);
    			printf("%d %d
    ", i , k);
    		}
    }
    
    int main(){
    	int t, bo, k = 1;
    	int f[M];
    	scanf("%d" ,&t);
    	while (t--){
    		// Init.
    		memset(f, 0, sizeof(f));
    		memset(map, 0, sizeof(map));
    		bo = 0;
    		for (int i = 0; i < M; i++)
    			num[i] = i;
            
    		// Read.
    		scanf("%d", &n);
    		for (int i = 0; i < n; i++){
    			int a, b;
    			scanf("%d%d", &a, &b);
    			f[a]++;
    			f[b]++;
    			map[a][b]++;
    			map[b][a]++;
                num[get_fa(a)] = get_fa(b);
    		}
            
    		// Find.
    		int god = 0;
        	for (int i = 0; i < M; i++)
    			if (f[i] && get_fa(i) == i)
    			{
    				god = i;
    				break;
    			}
            
    		// Judge.
    		for (int i = 0; i < M; i++){
    			bo += f[i] % 2;
    			if (f[i] && god != get_fa(i))
    					bo++;
    		}
            
    		// Printf.
    		printf("Case #%d
    ", k++);
    		if (bo > 0)
    			printf("some beads may be lost
    ");
    		else
    			print(god);
    		if (t)
    			printf("
    ");
    	}
    	return 0;}
  • 相关阅读:
    【转】禁用chrome firefox 的 WebRTC功能防止真实IP泄漏
    这是我的主场
    【转】反编译获取任何微信小程序源码(完)
    【转】npm 安装express npm ERR! code UNABLE_TO_VERIFY_LEAF_SIGNATURE
    查询最新的邮编地区
    【转】汇编语言入门教程
    Microsoft Windows远程桌面协议中间人攻击漏洞(CVE-2005-1794)漏洞解决方案(Windows server2003)
    IIS隐藏版本号教程(Windows Server 2003)
    Windows Server 2003添加防火墙策略教程
    Tomcat禁用SSLv3和RC4算法
  • 原文地址:https://www.cnblogs.com/jiangu66/p/3231044.html
Copyright © 2011-2022 走看看