zoukankan      html  css  js  c++  java
  • Netty 源码分析系列(一)Netty 概述

    前言

    关于Netty的学习,最近看了不少有关视频和书籍,也收获不少,希望把我知道的分享给你们,一起加油,一起成长。前面我们对 Java IOBIONIOAIO进行了分析,相关文章链接如下:

    深入分析 Java IO (一)概述

    深入分析 Java IO (二)BIO

    深入分析 Java IO (三)NIO

    深入分析 Java IO (四)AIO

    本篇文章我们就开始对 Netty来进行深入分析,首先我们来了解一下 JAVA NIOAIO的不足之处。

    Java原生API之痛

    虽然JAVA NIOJAVA AIO框架提供了多路复用IO/异步IO的支持,但是并没有提供上层“信息格式”的良好封装。用这些API实现一款真正的网络应用则并非易事。

    JAVA NIOJAVA AIO并没有提供断连重连、网络闪断、半包读写、失败缓存、网络拥塞和异常码流等的处理,这些都需要开发者自己来补齐相关的工作。

    AIO在实践中,并没有比NIO更好。AIO在不同的平台有不同的实现,windows系统下使用的是一种异步IO技术:IOCP;Linux下由于没有这种异步 IO 技术,所以使用的是epoll 对异步 IO 进行模拟。所以 AIO 在 Linux 下的性能并不理想。AIO 也没有提供对 UDP 的支持。

    综上,在实际的大型互联网项目中,Java 原生的 API 应用并不广泛,取而代之的是一款第三方Java 框架,这就是Netty

    Netty的优势

    Netty 提供 异步的、事件驱动的网络应用程序框架和工具,用以快速开发高性能、高可靠性的网络服务器和客户端程序。

    非阻塞 I/O

    Netty 是基于 Java NIO API 实现的网络应用框架,使用它可以快速简单的开发网络应用程序,如服务器和客户端程序。Netty 大大简化了网络程序开发的过程,如 TCP 和 UDP 的 Socket 服务的开发。

    由于是基于 NIO 的 API,因此,Netty 可以提供非阻塞的 I/O操作,极大的提升了性能。同时,Netty 内部封装了 Java NIO API 的复杂性,并提供了线程池的处理,使得开发 NIO 的应用变得极其简单。

    丰富的协议

    Netty 提供了简单、易用的 API ,但这并不意味着应用程序会有难维护和性能低的问题。Netty 是一个精心设计的框架,它从许多协议的实现中吸收了很多的经验,如 FTP 、SMTP、 HTTP、许多二进制和基于文本的传统协议。

    Netty 支持丰富的网络协议,如TCPUDPHTTPHTTP/2WebSocketSSL/TLS等,这些协议实现开箱即用,因此,Netty 开发者能够在不失灵活的前提下来实现开发的简易性、高性能和稳定性。

    异步和事件驱动

    Netty 是异步事件驱动的框架,该框架体现为所有的I/O操作都是异步的,所有的I/O调用会立即返回,并不保证调用成功与否,但是调用会返回ChannelFuture。Netty 会通过 ChannelFuture通知调用是成功了还是失败了,抑或是取消了。

    同时,Netty 是基于事件驱动的,调用者并不能立即获得结果,而是通过事件监听机制,用户可以方便地主动获取或者通过通知机制获得I/O操作的结果。

    Future对象刚刚创建时,处于非完成状态,调用者可以通过返回的ChannelFuture来获取操作执行的状态,再通过注册监听函数来执行完成后的操作,常见有如下操作:

    • 通过isDone方法来判断当前操作是否完成。
    • 通过isSuccess方法来判断已完成的当前操作是否成功。
    • 通过getCause方法来获取已完成的当前操作失败的原因。
    • 通过isCancelled方法来判断已完成的当前操作是否被取消。
    • 通过addListener方法来注册监听器,当操作已完成(isDone方法返回完成),将会通知指定的监听器;如果future对象已完成,则理解通知指定的监听器。

    例如:下面的代码中绑定端口是异步操作,当绑定操作处理完,将会调用相应的监听器处理逻辑。

    serverBootstrap.bind(port).addListener(future -> {
        if(future.isSuccess()){
            System.out.println("端口绑定成功!");
        }else {
            System.out.println("端口绑定失败!");
        }
    });
    

    相比传统的阻塞 I/O,Netty 异步处理的好处是不会造成线程阻塞,线程在 I/O操作期间可以执行其他的程序,在高并发情形下会更稳定并拥有更高的吞吐量。

    精心设计的API

    Netty 从开始就为用户提供了体验最好的API及实现设计。

    例如,在用户数较小的时候可能会选择传统的阻塞API,毕竟与 Java NIO 相比使用阻塞 API 将会更加容易一些。然而,当业务量呈指数增长并且服务器需要同时处理成千上万的客户连接,便会遇到问题。这种情况下可能会尝试使用 Java NIO,但是复杂的 NIO Selector 编程接口又会耗费大量的时间并最终会阻碍快速开发。

    Netty 提供了一个叫作 channel的统一的异步I/O编程接口,这个编程接口抽象了所有点对点的通信操作。也就是说,如果应用是基于Netty 的某一种传输实现,那么同样的,应用也可以运行在 Netty 的另一种传输实现上。Channel常见的子接口有:

    image-20210804105936809

    丰富的缓冲实现

    Netty 使用自建的缓存 API,而不是使用 Java NIO 的 ByteBuffer 来表示一个连续的字节序列。与 ByteBuffer 相比,这种方式拥有明显的优势。

    Netty 使用新的缓冲类型 ByteBuf ,并且被设计为可从底层解决 ByteBuffer 问题,同时还满足日常网络应用开发需要的缓冲类型。

    Netty 重要有以下特性:

    • 允许使用自定义的缓冲类型。
    • 复合缓冲类型中内置透明的零拷贝实现。
    • 开箱即用动态缓冲类型,具有像 StringBuffer 一样的动态缓冲能力。
    • 不再需要调用flip()方法。
    • 正常情况下具有比ByteBuffer更快的响应速度。

    高效的网络传输

    Java 原生的序列化主要存在以下几个弊端:

    • 无法跨语言。

    • 序列化后码流太大。

    • 序列化后性能太低。

    业界有非常多的框架用于解决上述问题,如 Google ProtobufJBoss MarshallingFacebook Thrift等。针对这些框架,Netty 都提供了相应的包将这些框架集成到应用中。同时,Netty 本身也提供了众多的编解码工具,方便开发者使用。开发者可以基于 Netty 来开发高效的网络传输应用,例如:高性能的消息中间件 Apache RocketMQ、高性能RPC框架Apache Dubbo等。

    Netty 核心概念

    Netty功能特性图

    从上述的架构图可以看出,Netty 主要由三大块组成:

    • 核心组件
    • 传输服务
    • 协议

    核心组件

    核心组件包括:事件模型、字节缓冲区和通信API

    事件模型

    Netty 是基于异步事件驱动的,该框架体现为所有的I/O操作都是异步的,调用者并不能立即获得结果,而是通过事件监听机制,用户可以方便地主动获取或者通过通知机制获得I/O操作的结果。

    Netty 将所有的事件按照它们与入站或出站数据流的相关性进行了分类。

    可能由入站数据或者相关的状态更改而触发的事件包括以下几项:

    • 连接已被激活或者连接失活。
    • 数据读取。
    • 用户事件。
    • 错误事件。

    出站事件是未来将会触发的某个动作的操作结果,包括以下动作:

    • 打开或者关闭到远程节点的连接。
    • 将数据写到或者冲刷到套接字。

    每个事件都可以被分发到ChannelHandler类中的某个用户实现的方法。

    字节缓冲区

    Netty 使用了区别于Java ByteBuffer 的新的缓冲类型ByteBuf,ByteBuf提供了丰富的特性。

    通信API

    Netty 的通信API都被抽象到Channel里,以统一的异步I/O编程接口来满足所有点对点的通信操作。

    传输服务

    Netty 内置了一些开箱即用的传输服务。因为并不是它们所有的传输都支持每一种协议,所以必须选择一个和应用程序所使用的协议相兼容的传输。以下是Netty提供的所有的传输。

    NIO

    io.netty.channel.socket.nio包用于支持NIO。该包下面的实现是使用java.nio.channels包作为基础(基于选择器的方式)。

    epoll

    io.netty.channel.epoll包用于支持由 JNI 驱动的 epoll 和 非阻塞 IO。

    需要注意的是,这个epoll传输只能在 Linux 上获得支持。epoll同时提供多种特性,如:SO_REUSEPORT 等,比 NIO传输更快,而且是完全非阻塞的。

    OIO

    io.netty.channel.socket.oio包用于支持使用java.net包作为基础的阻塞I/O

    本地

    io.netty.channel.local包用于支持在 VM 内部通过管道进行通信的本地传输。

    内嵌

    io.netty.channel.embedded包作为内嵌传输,允许使用ChannelHandler而又不需要一个真正的基于网络的传输。

    协议支持

    Netty 支持丰富的网络协议,如TCPUDPHTTPHTTP/2WebSocketSSL/TLS等,这些协议实现开箱即用,因此,Netty 开发者能够在不失灵活的前提下来实现开发的简易性、高性能和稳定性。

    Netty简单应用

    引入Maven依赖

    <dependency>
        <groupId>io.netty</groupId>
        <artifactId>netty-all</artifactId>
        <version>4.1.49.Final</version>
    </dependency>
    

    服务端的管道处理器

    public class NettyServerHandler extends ChannelInboundHandlerAdapter {
    
        //读取数据实际(这里我们可以读取客户端发送的消息)
        /*
        1. ChannelHandlerContext ctx:上下文对象, 含有 管道pipeline , 通道channel, 地址
        2. Object msg: 就是客户端发送的数据 默认Object
         */
        @Override
        public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
            System.out.println("server ctx =" + ctx);
            Channel channel = ctx.channel();
            //将 msg 转成一个 ByteBuf
            //ByteBuf 是 Netty 提供的,不是 NIO 的 ByteBuffer.
            ByteBuf buf = (ByteBuf) msg;
            System.out.println("客户端发送消息是:" + buf.toString(CharsetUtil.UTF_8));
            System.out.println("客户端地址:" + channel.remoteAddress());
        }
    
    
        //数据读取完毕
        @Override
        public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
            //writeAndFlush 是 write + flush
            //将数据写入到缓存,并刷新
            //一般讲,我们对这个发送的数据进行编码
            ctx.writeAndFlush(Unpooled.copiedBuffer("公司最近账户没啥钱,再等几天吧!", CharsetUtil.UTF_8));
        }
    
        //处理异常, 一般是需要关闭通道
        @Override
        public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
            ctx.close();
        }
    }
    

    NettyServerHandler继承自ChannelInboundHandlerAdapter,这个类实现了ChannelInboundHandler接口。ChannelInboundHandler提供了许多事件处理的接口方法。

    这里覆盖了channelRead()事件处理方法。每当从客户端收到新的数据时,这个方法会在收到消息时被调用。

    channelReadComplete()事件处理方法是数据读取完毕时被调用,通过调用ChannelHandlerContextwriteAndFlush()方法,把消息写入管道,并最终发送给客户端。

    exceptionCaught()事件处理方法是,当出现Throwable对象时才会被调用。

    服务端主程序

    public class NettyServer {
    
        public static void main(String[] args) throws Exception {
            //创建BossGroup 和 WorkerGroup
            //说明
            //1. 创建两个线程组 bossGroup 和 workerGroup
            //2. bossGroup 只是处理连接请求 , 真正的和客户端业务处理,会交给 workerGroup完成
            //3. 两个都是无限循环
            //4. bossGroup 和 workerGroup 含有的子线程(NioEventLoop)的个数
            //   默认实际 cpu核数 * 2
            //
            EventLoopGroup bossGroup = new NioEventLoopGroup(1);
            EventLoopGroup workerGroup = new NioEventLoopGroup(); //8
            try {
                //创建服务器端的启动对象,配置参数
                ServerBootstrap bootstrap = new ServerBootstrap();
                //使用链式编程来进行设置
                bootstrap.group(bossGroup, workerGroup) //设置两个线程组
                        .channel(NioServerSocketChannel.class) //bossGroup使用NioSocketChannel 作为服务器的通道实现
                        .option(ChannelOption.SO_BACKLOG, 128) // 设置线程队列得到连接个数 option主要是针对boss线程组,
                        .childOption(ChannelOption.SO_KEEPALIVE, true) //设置保持活动连接状态 child主要是针对worker线程组
                        .childHandler(new ChannelInitializer<SocketChannel>() {//workerGroup使用 SocketChannel创建一个通道初始化对象																														(匿名对象)
                            //给pipeline 设置处理器
                            @Override
                            protected void initChannel(SocketChannel ch) throws Exception {
                                //可以使用一个集合管理 SocketChannel, 再推送消息时,可以将业务加入到各个channel 对应的 NIOEventLoop 的 									taskQueue 或者 scheduleTaskQueue
                                ch.pipeline().addLast(new NettyServerHandler());
                            }
                        }); // 给我们的workerGroup 的 EventLoop 对应的管道设置处理器
    
                System.out.println(".....服务器 is ready...");
                //绑定一个端口并且同步, 生成了一个 ChannelFuture 对象
                //启动服务器(并绑定端口)
                ChannelFuture cf = bootstrap.bind(7788).sync();
                //给cf 注册监听器,监控我们关心的事件
                cf.addListener(new ChannelFutureListener() {
                    @Override
                    public void operationComplete(ChannelFuture future) throws Exception {
                        if (cf.isSuccess()) {
                            System.out.println("服务已启动,端口号为7788...");
                        } else {
                            System.out.println("服务启动失败...");
                        }
                    }
                });
                //对关闭通道进行监听
                cf.channel().closeFuture().sync();
            } finally {
                bossGroup.shutdownGracefully();
                workerGroup.shutdownGracefully();
            }
        }
    }
    

    NioEventLoopGroup是用来处理I/O操作的多线程事件循环器。Netty 提供了许多不同的EventLoopGroup的实现来处理不同的传输。

    上面的服务端应用中,有两个NioEventLoopGroup被使用。第一个叫作bossGroup,用来接收进来的连接。第二个叫作workerGroup,用来处理已经被接收的连接,一旦 bossGroup接收连接,就会把连接的信息注册到workerGroup上。

    ServerBootstrap是一个NIO服务的引导启动类。可以在这个服务中直接使用Channel

    • group方法用于 设置EventLoopGroup
    • 通过Channel方法,可以指定新连接进来的Channel类型为NioServerSocketChannel类。
    • childHandler用于指定ChannelHandler,也就是前面实现的NettyServerHandler
    • 可以通过option设置指定的Channel来实现NioServerSocketChannel的配置参数。
    • childOption主要设置SocketChannel的子Channel的选项。
    • bind用于绑定端口启动服务。

    客户端管道处理器

    public class NettyClientHandler extends ChannelInboundHandlerAdapter {
    
        //当通道就绪就会触发该方法
        @Override
        public void channelActive(ChannelHandlerContext ctx) throws Exception {
            System.out.println("client ctx =" + ctx);
            ctx.writeAndFlush(Unpooled.copiedBuffer("老板,工资什么时候发给我啊?", CharsetUtil.UTF_8));
        }
    
        //当通道有读取事件时,会触发
        @Override
        public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
            ByteBuf buf = (ByteBuf) msg;
            System.out.println("服务器回复的消息:" + buf.toString(CharsetUtil.UTF_8));
            System.out.println("服务器的地址: "+ ctx.channel().remoteAddress());
        }
    
        //处理异常, 一般是需要关闭通道
        @Override
        public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
            cause.printStackTrace();
            ctx.close();
        }
    }
    

    channelRead方法中将接收到的消息转化为字符串,方便在控制台上打印出来。

    channelRead接收到的消息类型为ByteBufByteBuf提供了转为字符串的方便方法。

    客户端主程序

    public class NettyClient {
    
        public static void main(String[] args) throws Exception {
            //客户端需要一个事件循环组
            EventLoopGroup group = new NioEventLoopGroup();
            try {
                //创建客户端启动对象
                //注意客户端使用的不是 ServerBootstrap 而是 Bootstrap
                Bootstrap bootstrap = new Bootstrap();
                //设置相关参数
                bootstrap.group(group) //设置线程组
                        .channel(NioSocketChannel.class) // 设置客户端通道的实现类(反射)
                        .handler(new ChannelInitializer<SocketChannel>() {
                            @Override
                            protected void initChannel(SocketChannel ch) throws Exception {
                                ch.pipeline().addLast(new NettyClientHandler()); //加入自己的处理器
                            }
                        });
                System.out.println("客户端 ok..");
                //启动客户端去连接服务器端
                //关于 ChannelFuture 要分析,涉及到netty的异步模型
                ChannelFuture channelFuture = bootstrap.connect("127.0.0.1", 7788).sync();
                //给关闭通道进行监听
                channelFuture.channel().closeFuture().sync();
            } finally {
                group.shutdownGracefully();
            }
        }
    }
    

    客户端只需要一个NioEventLoopGroup就可以了。

    测试运行

    分别启动服务器 NettyServer 和客户端 NettyClient程序

    服务端控制台输出内容:

    .....服务器 is ready...
    服务已启动,端口号为7788...
    server ctx =ChannelHandlerContext(NettyServerHandler#0, [id: 0xa1b2233c, L:/127.0.0.1:7788 - R:/127.0.0.1:63239])
    客户端发送消息是:老板,工资什么时候发给我啊?
    客户端地址:/127.0.0.1:63239
    

    客户端控制台输出内容:

    客户端 ok..
    client ctx =ChannelHandlerContext(NettyClientHandler#0, [id: 0x21d6f98e, L:/127.0.0.1:63239 - R:/127.0.0.1:7788])
    服务器回复的消息:公司最近账户没啥钱,再等几天吧!
    服务器的地址: /127.0.0.1:7788
    

    至此,一个简单的基于Netty开发的服务端和客户端就完成了。

    总结

    本篇文章主要讲解了 Netty 产生的背景、特点、核心组件及如何快速开启第一个 Netty 应用。

    后面我们会分析Netty架构设计ChannelChannelHandler、字节缓冲区ByteBuf线程模型编解码引导程序等方面的知识。

    结尾

    我是一个正在被打击还在努力前进的码农。如果文章对你有帮助,记得点赞、关注哟,谢谢!

  • 相关阅读:
    卷积神经网络
    TensorFlow线性回归
    TensorFlow常用操作
    TensorFlow基本计算单元——变量
    Pandas基础
    Numpy基础
    Python基础
    Windows下安装TensorFlow教程
    mongodb并列查询,模糊查询
    C#对Mongodb数组对象操作
  • 原文地址:https://www.cnblogs.com/jiangwang001/p/15101684.html
Copyright © 2011-2022 走看看