zoukankan      html  css  js  c++  java
  • POJ2112 Optimal Milking (网络流)(Dinic)

                                             Optimal Milking
    Time Limit: 2000MS   Memory Limit: 30000K
    Total Submissions: 16461   Accepted: 5911
    Case Time Limit: 1000MS

    Description

    FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C.

    Each milking point can "process" at most M (1 <= M <= 15) cows each day.

    Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine.

    Input

    * Line 1: A single line with three space-separated integers: K, C, and M.

    * Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line.

    Output

    A single line with a single integer that is the minimum possible total distance for the furthest walking cow.

    Sample Input

    2 3 2
    0 3 2 1 1
    3 0 3 2 0
    2 3 0 1 0
    1 2 1 0 2
    1 0 0 2 0
    

    Sample Output

    2
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <time.h>
    #include <string>
    #include <map>
    #include <stack>
    #include <vector>
    #include <set>
    #include <queue>
    #define inf 0x3f3f3f3f
    #define mod 10000
    typedef long long ll;
    using namespace std;
    const int N=305;
    const int M=300005;
    int power(int a,int b,int c){int ans=1;while(b){if(b%2==1){ans=(ans*a)%c;b--;}b/=2;a=a*a%c;}return ans;}
    int dis[N][N];
    int w[N][N];
    bool sign[N][N];
    bool used[N];
    int k,c,n,m;
    void Build_Graph(int min_max)
    {
        memset(w,0,sizeof(w));
        for(int i=1;i<=k;i++)w[0][i]=m;
        for(int i=k+1;i<=n;i++)w[i][n+1]=1;
        for(int i=1;i<=k;i++){
            for(int j=k+1;j<=n;j++){
                if(dis[i][j]<=min_max) w[i][j]=1;
            }
        }
    }
    bool BFS()
    {
        memset(used,false,sizeof(used));memset(sign,0,sizeof(sign));
        queue<int>q;
        q.push(0);used[0]=true;
        while(!q.empty()){
            int t=q.front();q.pop();
            for(int i=0;i<=n+1;i++){
                if(!used[i]&&w[t][i]){
                    q.push(i);
                    used[i]=true;
                    sign[t][i]=1;
                }
            }
        }
        if(used[n+1])return true;
        return false;
    }
    int DFS(int v,int sum)
    {
        if(v==n+1)return sum;
        int s=sum,t;
        for(int i=0;i<=n+1;i++){
            if(sign[v][i]){
                t=DFS(i,min(w[v][i],sum));
                w[v][i]-=t;
                w[i][v]+=t;
                sum-=t;
            }
        }
        return s-sum;
    }
    int main()
    {
        scanf("%d%d%d",&k,&c,&m);
        n=k+c;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                scanf("%d",&dis[i][j]);
                if(!dis[i][j])dis[i][j]=inf;
            }
        }
        for(int k=1;k<=n;k++){
            for(int i=1;i<=n;i++){
                if(dis[i][k]!=inf){
                    for(int j=1;j<=n;j++){
                        dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
                    }
                }
            }
        }
        int l=0,r=10000;
        while(l<r){
            int mid=(l+r)/2;
            int ans=0;
            Build_Graph(mid);
            while( BFS() )ans+=DFS(0,inf);//Dinic求最大流
            if(ans>=c) r=mid;
            else l=mid+1;
        }
        printf("%d
    ",r);
        return 0;
    }
    View Code
  • 相关阅读:
    java web中使用log4j
    Apache Log4j配置说明
    sql数据库为null时候ASP语句判断问题
    js实现两个文本框数值的加减乘除运算
    js实现文本框支持加减运算的方法
    php报错syntax error, unexpected T_GOTO, expecting T_STRING,报错文件与行数指向以下代码,是什么原因?
    安装DEDECMS出现Function ereg_replace()错误的解决方法
    按钮显示隐藏div、input等
    设计input搜索框提示文字点击消失的效果
    Xcode export/upload error: Your session has expired. Please log in-b
  • 原文地址:https://www.cnblogs.com/jianrenfang/p/5828880.html
Copyright © 2011-2022 走看看