zoukankan      html  css  js  c++  java
  • POJ 3422Kaka's Matrix Travels(最小费用最大流)

                                                            Kaka's Matrix Travels
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 9460   Accepted: 3844

    Description

    On an N × N chessboard with a non-negative number in each grid, Kaka starts his matrix travels with SUM = 0. For each travel, Kaka moves one rook from the left-upper grid to the right-bottom one, taking care that the rook moves only to the right or down. Kaka adds the number to SUM in each grid the rook visited, and replaces it with zero. It is not difficult to know the maximum SUM Kaka can obtain for his first travel. Now Kaka is wondering what is the maximum SUM he can obtain after his Kth travel. Note the SUM is accumulative during the K travels.

    Input

    The first line contains two integers N and K (1 ≤ N ≤ 50, 0 ≤ K ≤ 10) described above. The following N lines represents the matrix. You can assume the numbers in the matrix are no more than 1000.

    Output

    The maximum SUM Kaka can obtain after his Kth travel.

    Sample Input

    3 2
    1 2 3
    0 2 1
    1 4 2
    

    Sample Output

    15

    Source

    【分析】下面是模板。

     

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <time.h>
    #include <string>
    #include <map>
    #include <stack>
    #include <vector>
    #include <set>
    #include <queue>
    #define inf 0x7fffffff
    #define mod 10000
    #define met(a,b) memset(a,b,sizeof a)
    typedef long long ll;
    using namespace std;
    const int N = 100;
    const int M = 100000;
    struct Edge {
        int to,next,cap,flow,cost;
    } edge[M];
    int head[N],tol;
    int pre[N],dis[N];
    bool vis[N];
    int T;//节点总个数,节点编号从0~N-1
    void init(int n) {
        T = n;
        tol = 0;
        memset(head,-1,sizeof(head));
    }
    void addedge(int u,int v,int cap,int cost) {
        edge[tol].to = v;
        edge[tol].cap = cap;
        edge[tol].cost = cost;
        edge[tol].flow = 0;
        edge[tol].next = head[u];
        head[u] = tol++;
        edge[tol].to = u;
        edge[tol].cap = 0;
        edge[tol].cost = -cost;
        edge[tol].flow = 0;
        edge[tol].next = head[v];
        head[v] = tol++;
    }
    bool spfa(int s,int t) {
        queue<int>q;
        for(int i = 0; i < N; i++) {
            dis[i] = inf;
            vis[i] = false;
            pre[i] = -1;
        }
        dis[s] = 0;
        vis[s] = true;
        q.push(s);
        while(!q.empty()) {
            int u = q.front();
            q.pop();
            vis[u] = false;
            for(int i = head[u]; i != -1; i = edge[i].next) {
                int v = edge[i].to;
                if(edge[i].cap > edge[i].flow &&
                        dis[v] > dis[u] + edge[i].cost ) {
                    dis[v] = dis[u] + edge[i].cost;
                    pre[v] = i;
                    if(!vis[v]) {
                        vis[v] = true;
                        q.push(v);
                    }
                }
            }
        }
        if(pre[t] == -1)return false;
        else return true;
    }
    //返回的是最大流,cost存的是最小费用
    int minCostMaxflow(int s,int t,int &cost) {
        int flow = 0;
        cost = 0;
        while(spfa(s,t)) {
            int Min = inf;
            for(int i = pre[t]; i != -1; i = pre[edge[i^1].to]) {
                if(Min > edge[i].cap - edge[i].flow)
                    Min = edge[i].cap - edge[i].flow;
            }
            for(int i = pre[t]; i != -1; i = pre[edge[i^1].to]) {
                edge[i].flow += Min;
                edge[i^1].flow -= Min;
                cost += edge[i].cost * Min;
            }
            flow += Min;
        }
        return flow;
    }
    
    int a[N][N];
    int main() {
        int n,k;
        while(~scanf("%d%d",&n,&k) ) {
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++)
                    scanf("%d",&a[i][j]);
            init(2*n*n+2);
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++) {
                    addedge(n*i+j+1,n*n+n*i+j+1,1,-a[i][j]);
                    addedge(n*i+j+1,n*n+n*i+j+1,inf,0);
                }
    
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++) {
                    if(i < n-1)
                        addedge(n*n+n*i+j+1,n*(i+1)+j+1,inf,0);
                    if(j < n-1)
                        addedge(n*n+n*i+j+1,n*i+j+1+1,inf,0);
                }
            addedge(0,1,k,0);
            addedge(2*n*n,2*n*n+1,inf,0);
            int cost;
            minCostMaxflow(0,2*n*n+1,cost);
            printf("%d
    ",-cost);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    matplotlib 柱状图
    JavaScript 箭头函数
    JavaScript map reduce
    JavaScript sort函数
    JavaScript var、let、const
    javaScript 迭代器
    javaScript map和set
    批处理学习(-)之文件夹和文件的移动
    让 Lua 访问数据库
    lua 模块化推荐方法
  • 原文地址:https://www.cnblogs.com/jianrenfang/p/5922270.html
Copyright © 2011-2022 走看看