zoukankan      html  css  js  c++  java
  • POJ 3422Kaka's Matrix Travels(最小费用最大流)

                                                            Kaka's Matrix Travels
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 9460   Accepted: 3844

    Description

    On an N × N chessboard with a non-negative number in each grid, Kaka starts his matrix travels with SUM = 0. For each travel, Kaka moves one rook from the left-upper grid to the right-bottom one, taking care that the rook moves only to the right or down. Kaka adds the number to SUM in each grid the rook visited, and replaces it with zero. It is not difficult to know the maximum SUM Kaka can obtain for his first travel. Now Kaka is wondering what is the maximum SUM he can obtain after his Kth travel. Note the SUM is accumulative during the K travels.

    Input

    The first line contains two integers N and K (1 ≤ N ≤ 50, 0 ≤ K ≤ 10) described above. The following N lines represents the matrix. You can assume the numbers in the matrix are no more than 1000.

    Output

    The maximum SUM Kaka can obtain after his Kth travel.

    Sample Input

    3 2
    1 2 3
    0 2 1
    1 4 2
    

    Sample Output

    15

    Source

    【分析】下面是模板。

     

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <time.h>
    #include <string>
    #include <map>
    #include <stack>
    #include <vector>
    #include <set>
    #include <queue>
    #define inf 0x7fffffff
    #define mod 10000
    #define met(a,b) memset(a,b,sizeof a)
    typedef long long ll;
    using namespace std;
    const int N = 100;
    const int M = 100000;
    struct Edge {
        int to,next,cap,flow,cost;
    } edge[M];
    int head[N],tol;
    int pre[N],dis[N];
    bool vis[N];
    int T;//节点总个数,节点编号从0~N-1
    void init(int n) {
        T = n;
        tol = 0;
        memset(head,-1,sizeof(head));
    }
    void addedge(int u,int v,int cap,int cost) {
        edge[tol].to = v;
        edge[tol].cap = cap;
        edge[tol].cost = cost;
        edge[tol].flow = 0;
        edge[tol].next = head[u];
        head[u] = tol++;
        edge[tol].to = u;
        edge[tol].cap = 0;
        edge[tol].cost = -cost;
        edge[tol].flow = 0;
        edge[tol].next = head[v];
        head[v] = tol++;
    }
    bool spfa(int s,int t) {
        queue<int>q;
        for(int i = 0; i < N; i++) {
            dis[i] = inf;
            vis[i] = false;
            pre[i] = -1;
        }
        dis[s] = 0;
        vis[s] = true;
        q.push(s);
        while(!q.empty()) {
            int u = q.front();
            q.pop();
            vis[u] = false;
            for(int i = head[u]; i != -1; i = edge[i].next) {
                int v = edge[i].to;
                if(edge[i].cap > edge[i].flow &&
                        dis[v] > dis[u] + edge[i].cost ) {
                    dis[v] = dis[u] + edge[i].cost;
                    pre[v] = i;
                    if(!vis[v]) {
                        vis[v] = true;
                        q.push(v);
                    }
                }
            }
        }
        if(pre[t] == -1)return false;
        else return true;
    }
    //返回的是最大流,cost存的是最小费用
    int minCostMaxflow(int s,int t,int &cost) {
        int flow = 0;
        cost = 0;
        while(spfa(s,t)) {
            int Min = inf;
            for(int i = pre[t]; i != -1; i = pre[edge[i^1].to]) {
                if(Min > edge[i].cap - edge[i].flow)
                    Min = edge[i].cap - edge[i].flow;
            }
            for(int i = pre[t]; i != -1; i = pre[edge[i^1].to]) {
                edge[i].flow += Min;
                edge[i^1].flow -= Min;
                cost += edge[i].cost * Min;
            }
            flow += Min;
        }
        return flow;
    }
    
    int a[N][N];
    int main() {
        int n,k;
        while(~scanf("%d%d",&n,&k) ) {
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++)
                    scanf("%d",&a[i][j]);
            init(2*n*n+2);
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++) {
                    addedge(n*i+j+1,n*n+n*i+j+1,1,-a[i][j]);
                    addedge(n*i+j+1,n*n+n*i+j+1,inf,0);
                }
    
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++) {
                    if(i < n-1)
                        addedge(n*n+n*i+j+1,n*(i+1)+j+1,inf,0);
                    if(j < n-1)
                        addedge(n*n+n*i+j+1,n*i+j+1+1,inf,0);
                }
            addedge(0,1,k,0);
            addedge(2*n*n,2*n*n+1,inf,0);
            int cost;
            minCostMaxflow(0,2*n*n+1,cost);
            printf("%d
    ",-cost);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    页式管理
    Chord算法(原理)
    php实现反转链表(链表题一定记得画图)(指向链表节点的指针本质就是一个记录地址的变量)($p->next表示的是取p节点的next域里面的数值,next只是p的一个属性)
    js进阶ajax的XMLHttpRequest对象的status和statustext属性(如果ajax和php联合使用的话:open连接服务器的第二个参数文件路径改成请求php的url即可)
    js进阶ajax基本用法(创建对象,连接服务器,发送请求,获取服务器传过来的数据)
    js进阶课程ajax简介(ajax是浏览器来实现的)
    php面试题四
    heredoc(实现模板与代码的分离)
    如何查看计算机所连接的打印机
    php面试题三
  • 原文地址:https://www.cnblogs.com/jianrenfang/p/5922270.html
Copyright © 2011-2022 走看看