zoukankan      html  css  js  c++  java
  • POJ 3422Kaka's Matrix Travels(最小费用最大流)

                                                            Kaka's Matrix Travels
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 9460   Accepted: 3844

    Description

    On an N × N chessboard with a non-negative number in each grid, Kaka starts his matrix travels with SUM = 0. For each travel, Kaka moves one rook from the left-upper grid to the right-bottom one, taking care that the rook moves only to the right or down. Kaka adds the number to SUM in each grid the rook visited, and replaces it with zero. It is not difficult to know the maximum SUM Kaka can obtain for his first travel. Now Kaka is wondering what is the maximum SUM he can obtain after his Kth travel. Note the SUM is accumulative during the K travels.

    Input

    The first line contains two integers N and K (1 ≤ N ≤ 50, 0 ≤ K ≤ 10) described above. The following N lines represents the matrix. You can assume the numbers in the matrix are no more than 1000.

    Output

    The maximum SUM Kaka can obtain after his Kth travel.

    Sample Input

    3 2
    1 2 3
    0 2 1
    1 4 2
    

    Sample Output

    15

    Source

    【分析】下面是模板。

     

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <time.h>
    #include <string>
    #include <map>
    #include <stack>
    #include <vector>
    #include <set>
    #include <queue>
    #define inf 0x7fffffff
    #define mod 10000
    #define met(a,b) memset(a,b,sizeof a)
    typedef long long ll;
    using namespace std;
    const int N = 100;
    const int M = 100000;
    struct Edge {
        int to,next,cap,flow,cost;
    } edge[M];
    int head[N],tol;
    int pre[N],dis[N];
    bool vis[N];
    int T;//节点总个数,节点编号从0~N-1
    void init(int n) {
        T = n;
        tol = 0;
        memset(head,-1,sizeof(head));
    }
    void addedge(int u,int v,int cap,int cost) {
        edge[tol].to = v;
        edge[tol].cap = cap;
        edge[tol].cost = cost;
        edge[tol].flow = 0;
        edge[tol].next = head[u];
        head[u] = tol++;
        edge[tol].to = u;
        edge[tol].cap = 0;
        edge[tol].cost = -cost;
        edge[tol].flow = 0;
        edge[tol].next = head[v];
        head[v] = tol++;
    }
    bool spfa(int s,int t) {
        queue<int>q;
        for(int i = 0; i < N; i++) {
            dis[i] = inf;
            vis[i] = false;
            pre[i] = -1;
        }
        dis[s] = 0;
        vis[s] = true;
        q.push(s);
        while(!q.empty()) {
            int u = q.front();
            q.pop();
            vis[u] = false;
            for(int i = head[u]; i != -1; i = edge[i].next) {
                int v = edge[i].to;
                if(edge[i].cap > edge[i].flow &&
                        dis[v] > dis[u] + edge[i].cost ) {
                    dis[v] = dis[u] + edge[i].cost;
                    pre[v] = i;
                    if(!vis[v]) {
                        vis[v] = true;
                        q.push(v);
                    }
                }
            }
        }
        if(pre[t] == -1)return false;
        else return true;
    }
    //返回的是最大流,cost存的是最小费用
    int minCostMaxflow(int s,int t,int &cost) {
        int flow = 0;
        cost = 0;
        while(spfa(s,t)) {
            int Min = inf;
            for(int i = pre[t]; i != -1; i = pre[edge[i^1].to]) {
                if(Min > edge[i].cap - edge[i].flow)
                    Min = edge[i].cap - edge[i].flow;
            }
            for(int i = pre[t]; i != -1; i = pre[edge[i^1].to]) {
                edge[i].flow += Min;
                edge[i^1].flow -= Min;
                cost += edge[i].cost * Min;
            }
            flow += Min;
        }
        return flow;
    }
    
    int a[N][N];
    int main() {
        int n,k;
        while(~scanf("%d%d",&n,&k) ) {
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++)
                    scanf("%d",&a[i][j]);
            init(2*n*n+2);
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++) {
                    addedge(n*i+j+1,n*n+n*i+j+1,1,-a[i][j]);
                    addedge(n*i+j+1,n*n+n*i+j+1,inf,0);
                }
    
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++) {
                    if(i < n-1)
                        addedge(n*n+n*i+j+1,n*(i+1)+j+1,inf,0);
                    if(j < n-1)
                        addedge(n*n+n*i+j+1,n*i+j+1+1,inf,0);
                }
            addedge(0,1,k,0);
            addedge(2*n*n,2*n*n+1,inf,0);
            int cost;
            minCostMaxflow(0,2*n*n+1,cost);
            printf("%d
    ",-cost);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    c#随便写写 数据层和表现层,队列执行
    unity代码设置鼠标样式
    Unity c#反射查找类中符合条件的方法并执行
    封装你的协程Unity TaskManager
    基于steamworks获取steam用户头像
    开启Unity项目中VS工程的属性面板
    移动端的动态阴影
    c#静态扩展方法,字典的克隆扩展方法
    Unity热更方案汇总
    lua输入函数名字符串执行函数
  • 原文地址:https://www.cnblogs.com/jianrenfang/p/5922270.html
Copyright © 2011-2022 走看看