zoukankan      html  css  js  c++  java
  • URAL 1004 Sightseeing Trip(最小环)

    Sightseeing Trip

    Time limit: 0.5 second
    Memory limit: 64 MB
    There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place.
    Your task is to write a program which finds such a route. In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y1, …, yk, k > 2. The road yi (1 ≤ ik − 1) connects crossing points xi and xi+1, the road yk connects crossing points xk and x1. All the numbers x1, …, xk should be different. The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y1) + L(y2) + … + L(yk) where L(yi) is the length of the road yi (1 ≤ ik). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible, because there is no sightseeing route in the town.

    Input

    Input contains T tests (1 ≤ T ≤ 5). The first line of each test contains two integers: the number of crossing points N and the number of roads M (3 ≤ N ≤ 100; 3 ≤ MN · (N − 1)). Each of the next M lines describes one road. It contains 3 integers: the number of its first crossing point a, the number of the second one b, and the length of the road l (1 ≤ a, bN; ab; 1 ≤ l ≤ 300). Input is ended with a “−1” line.

    Output

    Each line of output is an answer. It contains either a string “No solution.” in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x1 to xk from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

    Sample

    inputoutput
    5 7
    1 4 1
    1 3 300
    3 1 10
    1 2 16
    2 3 100
    2 5 15
    5 3 20
    4 3
    1 2 10
    1 3 20
    1 4 30
    -1
    
    1 3 5 2
    No solution.
    
    Problem Source: Central European Olympiad in Informatics 1999
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    #include <string>
    #include <stack>
    #include <queue>
    #include <vector>
    #define inf 0x3f3f3f3f
    #define met(a,b) memset(a,b,sizeof a)
    typedef long long ll;
    using namespace std;
    const int N = 1e2+10;
    const int M = 24005;
    const int INF=0x7ffffff;
    int  dist[N][N], w[N][N];
    int  pre[N][N];
    int  path[N];
    int  n, m, num, minc;
    
    void floyd() {
        minc=INF;
        for(int k=1; k<=n; k++) {
            for(int i=1; i<k; i++)
                for(int j=i+1; j<k; j++) {
                    int  ans=dist[i][j]+w[i][k]+w[k][j];
                    if(ans<minc) { //找到最优解
                        minc=ans;
                        num=0;
                        int p=j;
                        while(p!=i) { //逆向寻找前驱遍历的路径并将其存储起来
                            path[num++]=p;
                            p=pre[i][p];
                        }
                        path[num++]=i;
                        path[num++]=k;
                    }
                }
            for(int i=1; i<=n; i++)
                for(int j=1; j<=n; j++) {
                    if(dist[i][j]>dist[i][k]+dist[k][j]) {
                        dist[i][j]=dist[i][k]+dist[k][j];
                        pre[i][j]=pre[k][j];
                    }
                }
        }
    }
    
    int main() {
        int  u, v, cost;
        while(cin >> n) {
            if(n<0) break;
            cin >> m;
            for(int i=1; i<=n; i++)
                for(int j=1; j<=n; j++) {
                    dist[i][j]=w[i][j]=INF;
                    pre[i][j]=i;
                }
            for(int i=1; i<=m; i++) {
                scanf("%d%d%d",&u,&v,&cost);
                if(dist[u][v]>cost)   //处理重边
                    w[u][v]=w[v][u]=dist[u][v]=dist[v][u]=cost;
            }
            floyd();
            if(minc==INF)
                printf("No solution.
    ");
            else {
                printf("%d",path[0]);
                for(int i=1; i<num; i++)
                    printf(" %d",path[i]);
                puts("");
            }
        }
        return 0;
    }
  • 相关阅读:
    我国教育技术期刊主要栏目的内容分析
    是互动还是告状 “家校通”通往何处?(转)
    美国高中的班级管理制度
    什么是决策支持系统?
    2009 AECT International Convention
    AECT94定义和AECT2005定义
    感受美国小学生的幸福校园生活! (转)
    教育管理信息系统的研究
    教学评价的新发展
    抽象方法与虚方法(转)
  • 原文地址:https://www.cnblogs.com/jianrenfang/p/6021351.html
Copyright © 2011-2022 走看看