zoukankan      html  css  js  c++  java
  • POJ 2893 M × N Puzzle(树状数组求逆序对)

                                                               M × N Puzzle
    Time Limit: 4000MS   Memory Limit: 131072K
    Total Submissions: 4112   Accepted: 1140

    Description

    The Eight Puzzle, among other sliding-tile puzzles, is one of the famous problems in artificial intelligence. Along with chess, tic-tac-toe and backgammon, it has been used to study search algorithms.

    The Eight Puzzle can be generalized into an M × N Puzzle where at least one of M and N is odd. The puzzle is constructed with MN − 1 sliding tiles with each a number from 1 to MN − 1 on it packed into a M by N frame with one tile missing. For example, with M = 4 and N = 3, a puzzle may look like:

    1 6 2
    4 0 3
    7 5 9
    10 8 11

    Let's call missing tile 0. The only legal operation is to exchange 0 and the tile with which it shares an edge. The goal of the puzzle is to find a sequence of legal operations that makes it look like:

    1 2 3
    4 5 6
    7 8 9
    10 11 0

    The following steps solve the puzzle given above.

    START

    1 6 2
    4 0 3
    7 5 9
    10 8 11

    DOWN

    1 0 2
    4 6 3
    7 5 9
    10 8 11
    LEFT
    1 2 0
    4 6 3
    7 5 9
    10 8 11

    UP

    1 2 3
    4 6 0
    7 5 9
    10 8 11

     

    RIGHT

    1 2 3
    4 0 6
    7 5 9
    10 8 11

    UP

    1 2 3
    4 5 6
    7 0 9
    10 8 11
    UP
    1 2 3
    4 5 6
    7 8 9
    10 0 11

    LEFT

    1 2 3
    4 5 6
    7 8 9
    10 11 0

    GOAL

    Given an M × N puzzle, you are to determine whether it can be solved.

    Input

    The input consists of multiple test cases. Each test case starts with a line containing M and N (2 M, N ≤ 999). This line is followed by M lines containing N numbers each describing an M × N puzzle.

    The input ends with a pair of zeroes which should not be processed.

    Output

    Output one line for each test case containing a single word YES if the puzzle can be solved and NO otherwise.

    Sample Input

    3 3
    1 0 3
    4 2 5
    7 8 6
    4 3
    1 2 5
    4 6 9
    11 8 10
    3 7 0
    0 0

    Sample Output

    YES
    NO

    题意:8数码问题的升级,就是通过移动空格(用0代替)使得原来状态变成有序的1234......0,不过,这题是N*M数码。

    题解:N*M都挺大的,搜索必然不行。考虑终态,实际就是逆序数为0的状态,然后四种操作方式分为:左右移动,对原序列的逆序数不影响;上下移动,如下:

    -------------0***********

    ***********x-------------

    x是任意数,现在要把x移上去,那么***********中,假设有a个大于x,b个小于x,那么移动之后逆序数就会加上一个b-a,x所能影响的也就是这些罢了,除此之外,其他都不变。

    接着,如果列数为偶数,那么******的个数就是奇数,b,a奇偶性互异,b-a为奇数,所以移动一次后,原序列的逆序数的奇偶性变了。

    考虑到最后0会移动到最后一行,所以奇偶性会改变n-i次(i为0的行数),只需判断最后是否是偶数即可。

    反之,如果列数为奇数,那么******的个数就是偶数,b,a奇偶性相同,b-a为偶数,所以移动一次后,原序列的逆序数的奇偶性没变。

    因为无论怎么移,奇偶性都不变,所以说一开始初态的奇偶性就必须与末态一致。

    题意来自http://blog.csdn.net/tmeteorj/article/details/8530105

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    #include <string>
    #include <map>
    #include <stack>
    #include <queue>
    #include <vector>
    #define inf 2e9
    #define met(a,b) memset(a,b,sizeof a)
    typedef long long ll;
    using namespace std;
    const int N = 999*999+5;
    const int M = 4e5+5;
    int n,m,tot=0,cnt=0;
    int head[N],ans[N];
    int tree[N];
    int a[N];
    void add(int k,int num) {
        while(k<=999*999-1) {
            tree[k]+=num;
            k+=k&(-k);
        }
    }
    int Sum(int k) {
        int sum=0;
        while(k>0) {
            sum+=tree[k];
            k-=k&(-k);
        }
        return sum;
    }
    int main() {
    
        while(scanf("%d%d",&n,&m),n||m) {
            int x,y,t,s=0,nu=0;
            for(int i=1; i<=n; i++)
                for(int j=1; j<=m; j++) {
                    scanf("%d",&t);
                    if(t==0)
                        x=i,y=j;
                    else
                        a[nu++]=t;
                }
           met(tree,0);
            for(int i=nu-1; i>=0; i--) {
                s+=Sum(a[i]-1);
                add(a[i],1);
            }
            if(m&1)
                if(s&1)puts("NO");
                else   puts("YES");
            else if(((n-x)^s)&1) puts("NO");
            else            puts("YES");
        }
        return 0;
    }
  • 相关阅读:
    java 使用jsch 远程链接linux执行命令
    Scott Mitchell 的ASP.NET 2.0数据教程之十三:在DetailsView控件中使用TemplateField
    Scott Mitchell 的ASP.NET 2.0数据教程之二十二:为删除数据添加客户端确认
    左边有个treeviwe控件,点击tree控件的一个节点右面进入相应的网页
    Scott Mitchell 的ASP.NET 2.0数据教程之二十三:基于用户对修改数据进行限制
    Scott Mitchell 的ASP.NET 2.0数据教程之十九:给新增、编辑界面增加验证控件 (翻译)
    Scott Mitchell 的ASP.NET 2.0数据教程之十二:在GridView控件中使用TemplateField
    Scott Mitchell 的ASP.NET 2.0数据教程之二十定制数据修改界面
    Scott Mitchell 的ASP.NET 2.0数据教程之十四:使用FormView 的模板
    Scott Mitchell 的ASP.NET 2.0数据教程之二十一:: 实现开放式并发
  • 原文地址:https://www.cnblogs.com/jianrenfang/p/6091623.html
Copyright © 2011-2022 走看看