zoukankan      html  css  js  c++  java
  • 猫狗大战

    @

    一.猫狗大战

    1.1 简介

    这是计算机视觉系列的第一篇博文,主要介绍用TensorFlow来实现猫狗分类、识别。该项目主要包括dataset、train、predict三部分。其中dataset.py主要是读取数据并对数据进行预处理;train.py主要是训练一个二分类模型;predict.py是用训练好的模型进行测试。GitHub地址:https://github.com/jx1100370217/dog-cat-master

    1.2 数据集

    该项目的数据主要包括1000张网上找的猫和狗的图片,其中猫,狗各500张。
    dog
    cats

    二.代码:

    dataset.py

    #!/usr/bin/env python3
    # -*- coding: utf-8 -*-
    # author: JX
    # data: 20181101
    
    import cv2
    import os
    import glob
    from sklearn.utils import shuffle
    import numpy as np
    
    def load_train(train_path,image_size,classes):
        images = []
        labels = []
        img_names = []
        cls = []
    
        print('Going to read training images')
        for fields in classes:
            index = classes.index(fields)
            print('Now going to read {} file (Index: {})'.format(fields,index))
            path = os.path.join(train_path,fields,'*g')
            files = glob.glob(path)
            for f1 in files:
                image = cv2.imread(f1)
                image = cv2.resize(image,(image_size,image_size),0,0,cv2.INTER_LINEAR)
                image = image.astype(np.float32)
                image = np.multiply(image,1.0 / 255.0)
                images.append(image)
                label = np.zeros(len(classes))
                label[index] = 1.0
                labels.append(label)
                flbase = os.path.basename(f1)
                img_names.append(flbase)
                cls.append(fields)
        images = np.array(images)
        labels = np.array(labels)
        img_names = np.array(img_names)
        cls = np.array(cls)
    
        return images,labels,img_names,cls
    
    class DataSet(object):
        def __init__(self,images,labels,img_names,cls):
            self._num_examples = images.shape[0]
    
            self._images = images
            self._labels = labels
            self._img_names = img_names
            self._cls = cls
            self._epochs_done = 0
            self._index_in_epoch = 0
        @property
        def images(self):
            return self._images
        @property
        def labels(self):
            return self._labels
        @property
        def img_names(self):
            return self._img_names
        @property
        def cls(self):
            return self._cls
        @property
        def num_examples(self):
            return self._num_examples
        @property
        def epochs_done(self):
            return self._epochs_done
    
        def next_batch(self,batch_size):
            start = self._index_in_epoch
            self._index_in_epoch += batch_size
    
            if self._index_in_epoch > self._num_examples:
                self._epochs_done += 1
                start = 0
                self._index_in_epoch = batch_size
                assert  batch_size <= self._num_examples
            end = self._index_in_epoch
    
            return self._images[start:end],self._labels[start:end],self._img_names[start:end],self.cls[start:end]
    
    def read_train_sets(train_path,image_size,classes,validation_size):
        class DataSets(object):
            pass
        data_sets = DataSets()
    
        images, labels, img_names, cls = load_train(train_path, image_size, classes)
        images, labels, img_names, cls = shuffle(images, labels, img_names, cls)
    
        if isinstance(validation_size, float):
            validation_size = int(validation_size * images.shape[0])
    
        validation_images = images[:validation_size]
        validation_labels = labels[:validation_size]
        validation_img_names = img_names[:validation_size]
        validation_cls = cls[:validation_size]
    
        train_images = images[validation_size:]
        train_labels = labels[validation_size:]
        train_img_names = img_names[validation_size:]
        train_cls = cls[validation_size:]
    
        data_sets.train = DataSet(train_images,train_labels,train_img_names,train_cls)
        data_sets.valid = DataSet(validation_images,validation_labels,validation_img_names,validation_cls)
    
        return data_sets
    

    train.py

    #!/usr/bin/env python3
    # -*- coding: utf-8 -*-
    # author: JX
    # data: 20181101
    
    import dataset
    import tensorflow as tf
    import time
    from datetime import timedelta
    import math
    import random
    import numpy as np
    from tensorflow import set_random_seed
    from numpy.random import seed
    seed(10)
    set_random_seed(20)
    
    batch_size = 32
    
    classes = ['dogs','cats']
    num_classes = len(classes)
    
    validation_size = 0.2
    img_size = 64
    num_channels = 3
    train_path = 'training_data'
    
    data = dataset.read_train_sets(train_path,img_size,classes,validation_size=validation_size)
    
    print("Complete reading input data.Will Now print a snippet of it")
    print("Number of files in Training-set:		{}".format(len(data.train.labels)))
    print("Number of files in Validation-set:		{}".format(len(data.valid.labels)))
    
    session = tf.Session()
    x = tf.placeholder(tf.float32,shape=[None,img_size,img_size,num_channels],name='x')
    
    y_true = tf.placeholder(tf.float32,shape=[None,num_classes],name='y_true')
    y_true_cls = tf.argmax(y_true,dimension=1)
    
    filter_size_conv1 = 3
    num_filters_conv1 = 32
    
    filter_size_conv2 = 3
    num_filters_conv2 = 32
    
    filter_size_conv3 = 3
    num_filters_conv3 = 64
    
    fc_layer_size = 1024
    
    def create_weights(shape):
        return tf.Variable(tf.truncated_normal(shape,stddev=0.05))
    
    def create_biases(size):
        return tf.Variable(tf.constant(0.05,shape=[size]))
    
    def create_convolutional_layer(input,
                                   num_input_channels,
                                   conv_filter_size,
                                   num_filters):
        weights = create_weights(shape=[conv_filter_size,conv_filter_size,num_input_channels,num_filters])
        biases = create_biases(num_filters)
    
        layer = tf.nn.conv2d(input=input,
                             filter=weights,strides=[1,1,1,1],
                             padding='SAME')
        layer += biases
        layer = tf.nn.relu(layer)
    
        layer = tf.nn.max_pool(value=layer,
                               ksize=[1,2,2,1],
                               strides=[1,2,2,1],
                               padding='SAME')
        return layer
    
    def create_flatten_layer(layer):
        layer_shape = layer.get_shape()
        num_features = layer_shape[1:4].num_elements()
        layer = tf.reshape(layer,[-1,num_features])
    
        return layer
    
    def create_fc_layer(input,
                        num_inputs,
                        num_outputs,
                        use_relu=True):
        weights = create_weights(shape=[num_inputs,num_outputs])
        biases = create_biases(num_outputs)
        layer = tf.matmul(input,weights) + biases
        layer = tf.nn.dropout(layer,keep_prob=0.7)
        if use_relu:
            layer = tf.nn.relu(layer)
    
        return layer
    
    layer_conv1 = create_convolutional_layer(input=x,
                                             num_input_channels=num_channels,
                                             conv_filter_size=filter_size_conv1,
                                             num_filters=num_filters_conv1)
    layer_conv2 = create_convolutional_layer(input=layer_conv1,
                                             num_input_channels=num_filters_conv1,
                                             conv_filter_size=filter_size_conv2,
                                             num_filters=num_filters_conv2)
    layer_conv3 = create_convolutional_layer(input=layer_conv2,
                                             num_input_channels=num_filters_conv2,
                                             conv_filter_size=filter_size_conv3,
                                             num_filters=num_filters_conv3)
    
    layer_flat = create_flatten_layer(layer_conv3)
    
    layer_fc1 = create_fc_layer(input=layer_flat,
                                num_inputs=layer_flat.get_shape()[1:4].num_elements(),
                                num_outputs=fc_layer_size,
                                use_relu=True)
    
    layer_fc2 = create_fc_layer(input=layer_fc1,
                                num_inputs=fc_layer_size,
                                num_outputs=num_classes,
                                use_relu=False)
    
    y_pred = tf.nn.softmax(layer_fc2,name='y_pred')
    
    y_pred_cls = tf.argmax(y_pred,dimension=1)
    session.run(tf.global_variables_initializer())
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2,labels=y_true)
    cost = tf.reduce_mean(cross_entropy)
    optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cost)
    correct_prediction = tf.equal(y_pred_cls,y_true_cls)
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    
    session.run(tf.global_variables_initializer())
    
    def show_pregress(epoch,feed_dict_train,feed_dict_validata,val_loss,i):
        acc = session.run(accuracy,feed_dict=feed_dict_train)
        val_acc = session.run(accuracy,feed_dict=feed_dict_validata)
        msg = "Training Epoch {0}---iterations: {1}---Training Accuracy:{2:>6.1%}," 
              "Validation Accuracy:{3:>6.1%},Validation Loss:{4:.3f}"
        print(msg.format(epoch+1,i,acc,val_acc,val_loss))
    
    total_iterations = 0
    
    saver = tf.train.Saver()
    def train(num_iteration):
        global  total_iterations
    
        for i in range(total_iterations,total_iterations + num_iteration):
            x_batch,y_true_batch,_,cls_batch = data.train.next_batch(batch_size)
            x_valid_batch,y_valid_batch,_,valid_cls_batch = data.valid.next_batch(batch_size)
    
            feed_dict_tr = {x: x_batch,y_true:y_true_batch}
            feed_dict_val = {x: x_valid_batch, y_true: y_valid_batch}
    
            session.run(optimizer,feed_dict=feed_dict_tr)
    
            if i % int(data.train.num_examples/batch_size) == 0:
                val_loss = session.run(cost,feed_dict=feed_dict_val)
                epoch = int(i / int(data.train.num_examples/batch_size))
    
                show_pregress(epoch,feed_dict_tr,feed_dict_val,val_loss,i)
                saver.save(session,'./dogs-cats-model/dog-cat.ckpt',global_step=i)
    
        total_iterations += num_iteration
    
    train(num_iteration=10000)
    

    predict.py

    #!/usr/bin/env python3
    # -*- coding: utf-8 -*-
    # author: JX
    # data: 20181101
    
    import tensorflow as tf
    import numpy as np
    import os
    import glob
    import cv2
    import sys
    
    image_size = 64
    num_channels = 3
    images = []
    
    path = 'cat.1.jpg'
    image = cv2.imread(path)
    image = cv2.resize(image,(image_size,image_size),0,0,cv2.INTER_LINEAR)
    images.append(image)
    images = np.array(images,dtype=np.uint8)
    images = images.astype('float32')
    images = np.multiply(images,1.0/255.0)
    x_batch = images.reshape(1,image_size,image_size,num_channels)
    
    sess = tf.Session()
    saver = tf.train.import_meta_graph('./dogs-cats-model/dog-cat.ckpt-9975.meta')
    saver.restore(sess,'./dogs-cats-model/dog-cat.ckpt-9975')
    graph = tf.get_default_graph()
    
    y_pred = graph.get_tensor_by_name("y_pred:0")
    
    x = graph.get_tensor_by_name("x:0")
    y_true = graph.get_tensor_by_name("y_true:0")
    y_test_images = np.zeros((1,2))
    
    feed_dict_testing = {x:x_batch,y_true:y_test_images}
    result = sess.run(y_pred,feed_dict=feed_dict_testing)
    
    res_label = ['dog','cat']
    print(res_label[result.argmax()])
    

    三.程序输出:

    train.py

    train
    models

    predict.py

    在这里插入图片描述
    在这里插入图片描述

  • 相关阅读:
    为什么这年头蓝牙功能越来越差
    猜数字-暴力枚举
    怎么使用PHPMailer实现邮件的发送??
    实现windows操作系统和VB下Linux虚拟操作系统相互传取文件方式总结
    第一篇 对Javascript中原型的深入理解
    每天进步一点点——关于SSD写入放大问题
    两步改动CentOS主机名称
    [CentOs7]搭建ftp服务器
    Another app is currently holding the yum lock
    [CentOs7]安装mysql(2)
  • 原文地址:https://www.cnblogs.com/jianxiong0117/p/9910588.html
Copyright © 2011-2022 走看看