牛顿法的应用:
1.求根:原理是函数(f(x))展开到一阶导。
2.最优化:原理是函数(f(x))展开到二阶导。
就应用2进行推导:
[f(x+ riangle x) = f(x)+ f'(x) riangle x + frac{1}{2} f''(x) riangle x^2
]
这个式子是成立的,当且仅当( riangle x)无限趋近于0。
此时上式等价于:
[f'(x)+f''(x) riangle x = 0
]
(Rightarrow riangle x =-frac{f'(x_n)}{f''(x_n)})
(Rightarrow x_{n+1} = x_n - frac{f'(x_n)}{f''(x_n)},n = 0,1,...)
可改写为:
[x_{n+1} = x_n - H_{n}^{-1}g_n
]
其中,
(g_n = g(x_n)= riangledown f(x_n) = f'(x_n)),(H_n=H(x_n) = f''(x_n)),(H(x) = [frac{partial ^2 f}{partial x_i partial x_j}]_{n imes n})是(f(x))的海塞矩阵。
使用牛顿法的困难之处在于海塞矩阵的求解以及再对其求逆。若维数过高,则很难求出海塞矩阵。
为了避免牛顿法的上述缺陷,提出拟牛顿法。
拟牛顿法
对 ( abla f(x))做泰勒展开:
[
abla f(x) = g_k +H_k(x-x_k)
]
取(x = x_{k+1}),即得:
[g_{k+1}-g_k = H{k}(x_{k+1}-x_k)
]
记(y_k = g_{k+1}-g_k,delta_k = x_{k+1}-x_k),则:
[y_k = H_kdelta_k
]
或
[delta_k = H_{k}^{-1}y_k = delta_k
]
在拟牛顿法中,选择(G_k)作为(H_{k}^{-1})的近似或选择(B_k)作为(H_k)的近似,并且使得它们满足上述拟牛顿条件即可。
参考:https://zhuanlan.zhihu.com/p/46536960
https://blog.csdn.net/songbinxu/article/details/79677948