zoukankan      html  css  js  c++  java
  • 机器学习—线性回归

    一、普通的线性模型

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn import metrics
    %matplotlib inline
    data = pd.read_csv('Advertising.csv',index_col=0)#第一列为index
    data.head()

    #切分训练集和测试集
    x = data.values[:,:3]
    y = data.values[:,3]
    x_train,x_test,y_train,y_test = train_test_split(x,y,train_size=0.7,random_state=0)
    #标准化处理
    sc = StandardScaler()
    x_train_std = sc.fit_transform(x_train)
    x_test_std = sc.transform(x_test)
    #训练模型
    linreg = LinearRegression()
    linreg.fit(x_train_std,y_train)
    y_pred = linreg.predict(x_test_std)
    #检验模型结果
    mse = np.average((y_pred-y_test)**2)
    metrics.mean_squared_error(y_pred,y_test)  #这个也是均方误差
    r2 = metrics.r2_score(y_test,y_pred)  #R2值,注意参数,前面的是实际值,后面的是预测值
    mse,r2
    #计算R2
    def calculater2(y_pred,y_test):
        RSS = ((y_pred-y_test)**2).sum()
        TSS = (((y_test-np.average(y_test))**2)).sum()
        return 1-(RSS/TSS)
    calculater2(y_pred,y_test)
    #画图
    fig = plt.figure(figsize=(10,6))
    plt.plot(y_test)
    plt.plot(y_pred)

    二、加入正则化的模型

    Ridge回归

    from sklearn.linear_model import RidgeCV,LassoCV   #用这个自带交叉验证参数
    from sklearn.model_selection import GridSearchCV   #如果使用RidgeCV就不用GridSearchCV这个API了
    #使用RidgeCV来建立参数
    alpha = np.logspace(-3,2,10)    #生成超参数,10的-3次方到10的2次方的等差数列
    ridge = RidgeCV(alpha,cv=5)
    ridge.fit(x_train_std,y_train)
    ridge.alpha_   #输出超参数的值
    #使用Ridge配合GridSearchCV来做
    from sklearn.linear_model import Ridge,Lasso
    ridge_model = GridSearchCV(Ridge(),param_grid={'alpha':alpha},cv=5)
    ridge_model.fit(x_train_std,y_train)
    ridge_model.best_params_
    #验证模型效果
    y_pred_ridge = ridge.predict(x_test_std)
    mse_ridge = metrics.mean_squared_error(y_test,y_pred_ridge)
    r2_ridge = metrics.r2_score(y_test,y_pred_ridge)
    mse_ridge,r2_ridge

    Lasso回归

    #建立模型
    lasso = LassoCV(alphas=alpha,cv=5)
    lasso.fit(x_train_std,y_train)
    lasso.alpha_
    #验证模型效果
    y_pred_lasso = lasso.predict(x_test_std)
    mse_lasso = metrics.mean_squared_error(y_test,y_pred_lasso)
    r2_lasso = metrics.r2_score(y_test,y_pred_lasso)
    mse_lasso,r2_lasso



  • 相关阅读:
    基本指令6---GRANT
    基本指令4---ALTER
    基本指令3--UPDATE/DELETE/DROP
    基本指令2---CREATE/INSERT INTO
    基本指令1
    jmeter-跨线程组传值
    【数学】斯特林子集数 | 斯特林轮换数 | 欧拉数
    【图论】拓扑排序
    【数学】多项式(原理)
    【数学】普通型生成函数
  • 原文地址:https://www.cnblogs.com/jiegege/p/7629913.html
Copyright © 2011-2022 走看看