Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4]
,
the contiguous subarray [4,-1,2,1]
has the largest sum = 6
.
click to show more practice.
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
题目标签:Array
Java Solution 1:
Runtime beats 71.37%
完成日期:03/28/2017
关键词:Array
关键点:基于 Kadane's Algorithm 改变
1 public class Solution 2 { 3 public int maxSubArray(int[] nums) 4 { 5 // Solution 1: O(n) 6 // check param validation. 7 if(nums == null || nums.length == 0) 8 return 0; 9 10 int sum = 0; 11 int max = Integer.MIN_VALUE; 12 13 // iterate nums array. 14 for (int i = 0; i < nums.length; i++) 15 { 16 // choose a larger one between current number or (previous sum + current number). 17 sum = Math.max(nums[i], sum + nums[i]); 18 max = Math.max(max, sum); // choose the larger max. 19 } 20 21 return max; 22 } 23 24 25 26 }
Java Solution 2:
Runtime beats 71.37%
完成日期:03/28/2017
关键词:Array
关键点:Kadane's Algorithm
1 public class Solution 2 { 3 public int maxSubArray(int[] nums) 4 { 5 int max_ending_here = 0; 6 int max_so_far = Integer.MIN_VALUE; 7 8 for(int i = 0; i < nums.length; i++) 9 { 10 if(max_ending_here < 0) 11 max_ending_here = 0; 12 max_ending_here += nums[i]; 13 max_so_far = Math.max(max_so_far, max_ending_here); 14 } 15 return max_so_far; 16 } 17 18 19 20 }
Java Solution 3:
Runtime beats 29.96%
完成日期:03/29/2017
关键词:Array
关键点:Divide and Conquer
1 public class Solution 2 { 3 public int maxSubArray(int[] nums) 4 { 5 // Solution 3: Divide and Conquer. O(nlogn) 6 if(nums == null || nums.length == 0) 7 return 0; 8 9 10 return Max_Subarray_Sum(nums, 0, nums.length-1); 11 } 12 13 public int Max_Subarray_Sum(int[] nums, int left, int right) 14 { 15 if(left == right) // base case: meaning there is only one element. 16 return nums[left]; 17 18 int middle = (left + right) / 2; // calculate the middle one. 19 20 // recursively call Max_Subarray_Sum to go down to base case. 21 int left_mss = Max_Subarray_Sum(nums, left, middle); 22 int right_mss = Max_Subarray_Sum(nums, middle+1, right); 23 24 // set up leftSum, rightSum and sum. 25 int leftSum = Integer.MIN_VALUE; 26 int rightSum = Integer.MIN_VALUE; 27 int sum = 0; 28 29 // calculate the maximum subarray sum for right half part. 30 for(int i=middle+1; i<= right; i++) 31 { 32 sum += nums[i]; 33 rightSum = Integer.max(rightSum, sum); 34 } 35 36 sum = 0; // reset the sum to 0. 37 38 // calculate the maximum subarray sum for left half part. 39 for(int i=middle; i>= left; i--) 40 { 41 sum += nums[i]; 42 leftSum = Integer.max(leftSum, sum); 43 } 44 45 // choose the max between left and right from down level. 46 int res = Integer.max(left_mss, right_mss); 47 // choose the max between res and middle range. 48 49 return Integer.max(res, leftSum + rightSum); 50 51 } 52 53 }
参考资料:
http://www.cnblogs.com/springfor/p/3877058.html
https://www.youtube.com/watch?v=ohHWQf1HDfU
LeetCode 算法题目列表 - LeetCode Algorithms Questions List