kmp算法完成的任务是:给定两个字符串O和f,长度分别为n和m,判断f是否在O中出现,如果出现则返回出现的位置。常规方法是遍历a的每一个位置,然后从该位置开始和b进行匹配,但是这种方法的复杂度是O(nm)。kmp算法通过一个O(m)的预处理,使匹配的复杂度降为O(n+m)。
参考链接:【经典算法】——KMP,深入讲解next数组的求解 - c_cloud - 博客园
讲解的非常清楚明白
主要就是next数组的求解
KMP算法的核心所在,就是next数组的求解!不过,在这里我找到了一个全新的理解方法!如果你懂的上面我写的的,那么下面的内容你只需稍微思考一下就行了!
跟刚才一样,我用一句话来阐述一下next数组的求解方法,其实也就是两个字:
继承
a、当前面字符的前一个字符的对称程度为0的时候,只要将当前字符与子串第一个字符进行比较。这个很好理解啊,前面都是0,说明都不对称了,如果多加了一个字符,要对称的话最多是当前的和第一个对称。比如agcta这个里面t的是0,那么后面的a的对称程度只需要看它是不是等于第一个字符a了。
b、按照这个推理,我们就可以总结一个规律,不仅前面是0呀,如果前面一个字符的next值是1,那么我们就把当前字符与子串第二个字符进行比较,因为前面的是1,说明前面的字符已经和第一个相等了,如果这个又与第二个相等了,说明对称程度就是2了。有两个字符对称了。比如上面agctag,倒数第二个a的next是1,说明它和第一个a对称了,接着我们就把最后一个g与第二个g比较,又相等,自然对称成都就累加了,就是2了。
c、按照上面的推理,如果一直相等,就一直累加,可以一直推啊,推到这里应该一点难度都没有吧,如果你觉得有难度说明我写的太失败了。
当然不可能会那么顺利让我们一直对称下去,如果遇到下一个不相等了,那么说明不能继承前面的对称性了,这种情况只能说明没有那么多对称了,但是不能说明一点对称性都没有,所以遇到这种情况就要重新来考虑,这个也是难点所在。
如果蓝色的部分相同,则当前next数组的值为上一个next的值加一,如果不相同,就是我们下面要说的!
如果不相同,用一句话来说,就是:
从前面来找子前后缀
1、如果要存在对称性,那么对称程度肯定比前面这个的对称程度小,所以要找个更小的对称,这个不用解释了吧,如果大那么就继承前面的对称性了。
2、要找更小的对称,必然在对称内部还存在子对称,而且这个必须紧接着在子对称之后。
如果看不懂,那么看一下图吧!
说了这么多,下面是代码实现
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define N 100
void cal_next( char * str, int * next, int len )
{
int i, j;
next[0] = -1;
for( i = 1; i < len; i++ )
{
j = next[ i - 1 ];
while( str[ j + 1 ] != str[ i ] && ( j >= 0 ) )
{
j = next[ j ];
}
if( str[ i ] == str[ j + 1 ] )
{
next[ i ] = j + 1;
}
else
{
next[ i ] = -1;
}
}
}
int KMP( char * str, int slen, char * ptr, int plen, int * next )
{
int s_i = 0, p_i = 0;
while( s_i < slen && p_i < plen )
{
if( str[ s_i ] == ptr[ p_i ] )
{
s_i++;
p_i++;
}
else
{
if( p_i == 0 )
{
s_i++;
}
else
{
p_i = next[ p_i - 1 ] + 1;
}
}
}
return ( p_i == plen ) ? ( s_i - plen ) : -1;
}
int main()
{
char str[ N ] = {0};
char ptr[ N ] = {0};
int slen, plen;
int next[ N ];
while( scanf( "%s%s", str, ptr ) )
{
slen = strlen( str );
plen = strlen( ptr );
cal_next( ptr, next, plen );
printf( "%d
", KMP( str, slen, ptr, plen, next ) );
}
return 0;
}
参考链接
如果你看不懂KMP算法,那就看一看这篇文章( 绝对原创,绝对通俗易懂) - Stay Hungry,Stay Foolish - 博客频道 - CSDN.NET