zoukankan      html  css  js  c++  java
  • 卡特兰数(Train Problem II )

                                                 Train Problem II

    As we all know the Train Problem I, the boss of the Ignatius Train Station want to know if all the trains come in strict-increasing order, how many orders that all the trains can get out of the railway.

    Input

    The input contains several test cases. Each test cases consists of a number N(1<=N<=100). The input is terminated by the end of file.

    Output

    For each test case, you should output how many ways that all the trains can get out of the railway.

    Sample Input

    1
    2
    3
    10

    Sample Output

    1
    2
    5
    16796
    

    它的一般项公式为:

    Hn=1n+1Cn2n=(2n)!(n+1)!n!

    递推公式为:

    Hn+1=∑i=0nHiHn−i=2(2n+1)n+2Hn(n≥0)

    
    //h( n ) = ( ( 4*n-2 )/( n+1 )*h( n-1 ) );
    
    #include<stdio.h>
    
    //*******************************
    //打表卡特兰数
    //第 n个 卡特兰数存在a[n]中,a[n][0]表示长度;
    //注意数是倒着存的,个位是 a[n][1] 输出时注意倒过来。
    //*********************************
    int a[105][100];
    void ktl()
    {
        int i,j,yu,len;
        a[2][0]=1;
        a[2][1]=2;
        a[1][0]=1;
        a[1][1]=1;
        len=1;
        for(i=3;i<101;i++)
        {
            yu=0;
            for(j=1;j<=len;j++)
            {
                int t=(a[i-1][j])*(4*i-2)+yu;
                yu=t/10;
                a[i][j]=t%10;
            }
            while(yu)
            {
                a[i][++len]=yu%10;
                yu/=10;
            }
            for(j=len;j>=1;j--)
            {
                int t=a[i][j]+yu*10;
                a[i][j]=t/(i+1);
                yu = t%(i+1);
            }
            while(!a[i][len])
            {
                len--;
            }
            a[i][0]=len;
        }
    
    }
    int main()
    {
        ktl();
        int n;
        while(scanf("%d",&n)!=EOF)
        {
            for(int i=a[n][0];i>0;i--)
            {
                printf("%d",a[n][i]);
            }
            puts("");
        }
        return 0;
    }
    
  • 相关阅读:
    NOI 2016 区间 解题报告
    有关莫队
    [JSOI2008]最大数 线段树解法
    HDU P3341 Lost's revenge 题解+数据生成器
    BZOJ P1212 [HNOI2004] L语言
    洛谷P3168 [CQOI2015]任务查询系统
    普通平衡树Tyvj1728、luogu P3369 (splay)
    洛谷P3384 树链剖分
    BZOJ P2157 旅游
    【算法导论】第6章,堆排序
  • 原文地址:https://www.cnblogs.com/jk17211764/p/9677379.html
Copyright © 2011-2022 走看看