zoukankan      html  css  js  c++  java
  • 并查集(Union Find)的实现及代码应用

    前言

      之前我们在连通分量的个数那个题中提到了并查集,可是我们还是没有正式讲解并查集的使用方法,下面我们来正式讲一下并查集的使用及实现

      我们要知道,并查集包含两部分,并(union)和查(find),他们是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,

      其间可以查找一个元素在哪个集合中,也可以查找一共有几个集合。

      并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。

    1.find函数

      find函数是用来查找各个点的上级的,作为上级的结点的上级为其本身,如1->2->3此三个点为同一类,那么将1的pre数组设为其本身,将2和3的pre数组按递归的方式变为pre[ 1 ],以此类推。

      代码实现如下:

    int pre[1000 ];
    
    int find(int x)  //查找根节点
    { 
        int r=x;
        while ( pre[r] != r ) //返回根节点 r    
           {
                r=pre[r];
           }
        int i=x , j ;
        while( i != r )  //路径压缩
        {
             j = pre[i]; // 在改变上级之前用临时变量  j 记录下他的值 
             pre[i]= r ; //把上级改为根节点
             i=j;
        }
        return r ;
    }                        

    2.Union函数

      union函数就是将不连通的分量连通起来,归为同一个类

      代码实现如下:

    /*判断x y是否连通,如果已经连通,就不用管了;如果不连通,就把它们所在的连通分支合并起来*/
    void union(int x,int y)                                                                                                    
    {
        int fx=find(x),fy=find(y);
        if(fx!=fy) 
        {
             pre[fx ]=fy;
        }
    }    

    3.时间复杂度分析

      空间复杂度为O(N),建立一个集合的时间复杂度为O(1),N次合并M查找的时间复杂度为O(Mα(N)),这里α是Ackerman函数的某个反函数。

    4.应用

      并查集常作为另一种复杂的数据结构或者算法的存储结构。常见的应用有:

    •  求无向图的连通分量个数
    •  最近公共祖先(LCA)
    •  带限制的作业排序
    •     实现Kruskar算法求最小生成树

    5.参考资料

      https://blog.csdn.net/u013546077/article/details/64509038

      https://blog.csdn.net/chen_lin111/article/details/50408379

  • 相关阅读:
    为什么做java开发的公司需要那么多程序员?
    一篇文章了解架构设计的本质
    深入理解 Java 多线程核心知识
    面试经验总结:注意这几点,面试通过率上涨30%
    程序员一般做到多少岁,那些70后的程序员都消失了?
    连阿里都在用它处理亿万级数据统计,论其对Java程序员的重要性!
    【源码】HashMap源码及线程非安全分析
    基于框架的RPC通信技术原理解析
    如何写好一份技术简历?
    彻底理解Netty,这一篇文章就够了
  • 原文地址:https://www.cnblogs.com/jkxsz2333/p/9516267.html
Copyright © 2011-2022 走看看