1.具体算法
/** * Created by huazhou on 2015/12/6. */ public class TestSearch { public static void main(String[] args){ Graph G = new Graph(new In(args[0])); int s = Integer.parseInt(args[1]); // DepthFirstSearch search = new DepthFirstSearch(G, s); // Paths search = new Paths(G, s); // DepthFirstSearch search = new DepthFirstSearch(G,s); BreadthFirstPaths search = new BreadthFirstPaths(G,s); findAllPaths(search, G, s); } private static void findAllPaths(BreadthFirstPaths search, Graph G, int s){ for(int v = 0; v < G.V(); v++){ StdOut.print(s + " to " + v + ": "); if(search.hasPathTo(v)){ for (int x : search.pathTo(v)){ if(x == s){ StdOut.print(x); } else{ StdOut.print("-" + x); } } } StdOut.println(); } } }
/** * 算法4.2 使用广度优先搜索查找图中的路径 * Created by huazhou on 2015/12/9. */ public class BreadthFirstPaths { private boolean[] marked; //到达该顶点的最短路径已知吗? private int[] edgeTo; //到达该顶点的已知路径上的最后一个顶点 private int s; //起点 public BreadthFirstPaths(Graph G, int s){ marked = new boolean[G.V()]; edgeTo = new int[G.V()]; this.s = s; bfs(G, s); } private void bfs(Graph G, int s){ Queue<Integer> queue = new Queue<Integer>(); marked[s] = true; //标记起点 queue.enqueue(s); //将它加入队列 while(!queue.isEmpty()){ int v = queue.dequeue(); //从队列中删去下一顶点 for (int w : G.adj(v)){ //对于每个未被标记的相邻顶点 if(!marked[w]){ edgeTo[w] = v; //保持最短路径的最后一条边 marked[w] = true; //标记它,因为最短路径已知 queue.enqueue(w); //并将它添加到队列中 } } } } public boolean hasPathTo(int v){ return marked[v]; } public Iterable<Integer> pathTo(int v){ if(!hasPathTo(v)){ return null; } Stack<Integer> path = new Stack<Integer>(); for (int x = v; x != s; x = edgeTo[x]){ path.push(x); } path.push(s); return path; } }
2.执行过程
3.算法分析
命题:对于从s可达的任意顶点v,广度优先搜索都能找到一条从s到v的最短路径(没有其他从s到v的路径所含的边比这条路径更少)
命题:广度优先搜索所需的时间在最坏情况下和V+E成正比。
【源码下载】