Given two sequences of numbers : a11, a22, ...... , aNN, and b11, b22, ...... , bMM(1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make aKK = b11, aK+1K+1 = b22, ...... , aK+M−1K+M−1 = bMM. If there are more than one K exist, output the smallest one.
InputThe first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a11, a22, ...... , aNN. The third line contains M integers which indicate b11, b22, ...... , bMM. All integers are in the range of −1000000,1000000−1000000,1000000.
OutputFor each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
Sample Output
6 -1
#include<iostream> #include<algorithm> #include<cstdio> #include<vector> #include<string> #include<cstring> using namespace std; #define MAXN 1000001 typedef long long LL; /* KMP 查找子串首次出现的位置 */ int s[MAXN],t[MAXN],Next[MAXN]; void kmp_pre(int m) { int j,k; j=0;k=-1;Next[0]=-1; while(j<m) { if(k==-1||t[j]==t[k]) Next[++j] = ++k; else k = Next[k]; } } int KMP(int n,int m) { int i,j,ans; i=j=ans=0; kmp_pre(m); if(n==1&&m==1) return (s[0]==t[0])?1:-1; for(i=0;i<n;i++) { while(j>0&&s[i]!=t[j]) j = Next[j]; if(s[i]==t[j]) j++; if(j>=m) { if(i-m+2>0) return i-m+2; else return -1; } } return -1; } int main() { int T,n,m; scanf("%d",&T); while(T--) { scanf("%d%d",&n,&m); for(int i=0;i<n;i++) scanf("%d",&s[i]); for(int i=0;i<m;i++) scanf("%d",&t[i]); printf("%d ",KMP(n,m)); } }