zoukankan      html  css  js  c++  java
  • E

    For each prefix of a given string S with N characters (each character has an ASCII code between 97 and 126, inclusive), we want to know whether the prefix is a periodic string. That is, for each i (2 <= i <= N) we want to know the largest K > 1 (if there is one) such that the prefix of S with length i can be written as A K , that is A concatenated K times, for some string A. Of course, we also want to know the period K. 

    InputThe input file consists of several test cases. Each test case consists of two lines. The first one contains N (2 <= N <= 1 000 000) �C the size of the string S. The second line contains the string S. The input file ends with a line, having the number zero on it. 
    OutputFor each test case, output “Test case #” and the consecutive test case number on a single line; then, for each prefix with length i that has a period K > 1, output the prefix size i and the period K separated by a single space; the prefix sizes must be in increasing order. Print a blank line after each test case. 
    Sample Input

    3
    aaa
    12
    aabaabaabaab
    0

    Sample Output

    Test case #1
    2 2
    3 3
    
    Test case #2
    2 2
    6 2
    9 3
    12 4


    结论:j%(j-Nex[t])==0 说明该前缀是一个周期为j/(j-Next[j])的周期子序列
    证明: j - Next[j] 是子串在失配时候的右移长度,说明在j位置失配的时候子串转移到next[j]处继续匹配,说明j之前的部分和next[j]之前的部分是相同的,也就是说j-Next[j]
    是一个周期
    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<vector>
    #include<string>
    #include<cstring>
    using namespace std;
    #define MAXN 1000001
    typedef long long LL;
    /*
    */
    char s[MAXN];
    int Next[MAXN];
    void kmp_pre(int m)
    {
        int j,k;
        j = 0;
        k = -1;
        Next[0] = -1;
        while(j<m)
        {
            if(k==-1||s[j]==s[k])
                Next[++j] = ++k;
            else
                k = Next[k];
        }
    }
    int main()
    {
        int m;
        int cas=1;
        while(scanf("%d",&m),m)
        {
            scanf("%s",s);
            kmp_pre(m);
            printf("Test case #%d
    ",cas++);
            for(int i=1;i<=m;i++)
                if((i)%(i-Next[i])==0&&i/(i-Next[i])>1)
                    printf("%d %d
    ",i,(i)/(i-Next[i]));
            cout<<endl;
        }
    }
  • 相关阅读:
    Form.KeyPreview 属性
    键盘输入、鼠标输入、焦点处理
    KeyDown,KeyPress 和KeyUp
    C#反射实例应用--------获取程序集信息和通过类名创建类实例
    Attribute操作的性能优化方式
    OBjective-C:atomic和nonatomic的区别
    Objective-C:OC内部可变对象和不可变对象的深(复制)拷贝问题思考:
    Objective-C:三种文件导入的方式比较
    Objective-C:保留计数器思想的详解(对象的保留和所有权的释放)
    Objective-C:深复制(拷贝)
  • 原文地址:https://www.cnblogs.com/joeylee97/p/6674581.html
Copyright © 2011-2022 走看看