zoukankan      html  css  js  c++  java
  • 树 (p155, 从中序和后续回复二叉树)

    递归求解,

    You are to determine the value of the leaf node in a given binary tree that is the terminal node of a path of least value from the root of the binary tree to any leaf. The value of a path is the sum of values of nodes along that path.

    Input The input file will contain a description of the binary tree given as the inorder and postorder traversal sequences of that tree. Your program will read two line (until end of file) from the input file. The first line will contain the sequence of values associated with an inorder traversal of the tree and the second line will contain the sequence of values associated with a postorder traversal of the tree.

    All values will be different, greater than zero and less than 10000. You may assume that no binary tree will have more than 10000 nodes or less than 1 node. Output For each tree description you should output the value of the leaf node of a path of least value.

    Inthe case of multiple paths of least value you should pick the one with the least value on the terminal node.

    Sample Input

    3 2 1 4 5 7 6

    3 1 2 5 6 7 4

    7 8 11 3 5 16 12 18

    8 3 11 7 16 18 12 5

    255

    255

    Sample Output 1 3 255

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<sstream>
    #include<algorithm>
    #include<queue>
    #include<vector>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<set>
    #include<fstream>
    #include<memory>
    #include<string>
    using namespace std;
    typedef long long LL;
    typedef unsigned long long ULL;
    #define MAXN  10003
    #define INF 1000000009
    int a[MAXN], b[MAXN];//中序遍历 和 后序遍历
    int ans,k;
    struct node
    {
        int left, right;
    }T[MAXN];
    int build(int inbeg, int inend, int pbeg, int pend)
    {
        if (inbeg > inend || pbeg > pend)
            return -1;
        int r = b[pend];
        int p = inbeg,cnt = 0;
        while (a[p] != r)
            p++;
        cnt = p - inbeg;
        T[r].left = build(inbeg, p - 1, pbeg, pbeg + cnt-1);
        T[r].right = build(p + 1, inend, pbeg + cnt, pend - 1);
        return r;
    }
    void get_ans(int x, int sum)
    {
        sum += x;
        if (T[x].left == -1 && T[x].right == -1)
        {
            if (sum < ans || (sum == ans&&x < k))
            {
                ans = sum;
                k = x;
            }
        }
        if (T[x].left != -1) get_ans(T[x].left, sum);
        if (T[x].right != -1) get_ans(T[x].right, sum);
    }
    int main()
    {
        string tmp;
        while (getline(cin, tmp))
        {
            stringstream s(tmp);
            int i = 0, j = 0;
            while (s >> a[i]) i++;
            getline(cin, tmp);
            stringstream s1(tmp);
            for (j = 0; j < i; j++)
            {
                s1 >> b[j];
            }
            int n = i, root = b[i - 1];
            ans = INF;
            for (int i = 1; i < MAXN; i++)
                T[i].left = T[i].right = 0;
            build(0, n - 1, 0, n - 1);
            get_ans(root, 0);
            cout << k << endl;
        }
    }

     把求解和递归合并

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<sstream>
    #include<algorithm>
    #include<queue>
    #include<vector>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<set>
    #include<fstream>
    #include<memory>
    #include<string>
    using namespace std;
    typedef long long LL;
    typedef unsigned long long ULL;
    #define MAXN  10003
    #define INF 1000000009
    int a[MAXN], b[MAXN];//中序遍历 和 后序遍历
    int ans,k;
    struct node
    {
        int left, right;
    }T[MAXN];
    int build(int inbeg, int inend, int pbeg, int pend,int sum)
    {
        if (inbeg > inend || pbeg > pend)
            return -1;
        int r = b[pend];
        sum += r;
        int p = inbeg,cnt = 0;
        while (a[p] != r)
            p++;
        cnt = p - inbeg;
        T[r].left = build(inbeg, p - 1, pbeg, pbeg + cnt-1,sum);
        T[r].right = build(p + 1, inend, pbeg + cnt, pend - 1,sum);
        if (T[r].left == -1 && T[r].right == -1)
        {
            if (sum < ans || (sum == ans&&r < k))
            {
                ans = sum;
                k = r;
            }
        }
        return r;
    }
    /*
    void get_ans(int x, int sum)
    {
        sum += x;
        if (T[x].left == -1 && T[x].right == -1)
        {
            if (sum < ans || (sum == ans&&x < k))
            {
                ans = sum;
                k = x;
            }
        }
        if (T[x].left != -1) get_ans(T[x].left, sum);
        if (T[x].right != -1) get_ans(T[x].right, sum);
    }
    */
    int main()
    {
        string tmp;
        while (getline(cin, tmp))
        {
            stringstream s(tmp);
            int i = 0, j = 0;
            while (s >> a[i]) i++;
            getline(cin, tmp);
            stringstream s1(tmp);
            for (j = 0; j < i; j++)
            {
                s1 >> b[j];
            }
            int n = i, root = b[i - 1];
            ans = INF;
            for (int i = 1; i < MAXN; i++)
                T[i].left = T[i].right = 0;
            build(0, n - 1, 0, n - 1,0);
            cout << k << endl;
        }
    }
  • 相关阅读:
    游戏开发之游戏策划的基本原则
    Lua游戏脚本语言入门
    游戏策划之游戏心理学理论深入浅出
    微博的10大特征包括哪些?
    普米族求助,十万火急!!! 请大家给力!!!
    剑指微博营销,速创品牌传奇
    将网络推广进行到底
    浅谈如何利用微博进行网站推广(转)
    “土风计划”,陈哲另一个伟大事业
    快速增加微博粉丝的十六大技巧
  • 原文地址:https://www.cnblogs.com/joeylee97/p/6738124.html
Copyright © 2011-2022 走看看