zoukankan      html  css  js  c++  java
  • 欧拉回路输出(DFS,不用回溯!)Watchcow POJ 2230

    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 8109   Accepted: 3551   Special Judge

    Description

    Bessie's been appointed the new watch-cow for the farm. Every night, it's her job to walk across the farm and make sure that no evildoers are doing any evil. She begins at the barn, makes her patrol, and then returns to the barn when she's done. 

    If she were a more observant cow, she might be able to just walk each of M (1 <= M <= 50,000) bidirectional trails numbered 1..M between N (2 <= N <= 10,000) fields numbered 1..N on the farm once and be confident that she's seen everything she needs to see. But since she isn't, she wants to make sure she walks down each trail exactly twice. It's also important that her two trips along each trail be in opposite directions, so that she doesn't miss the same thing twice. 

    A pair of fields might be connected by more than one trail. Find a path that Bessie can follow which will meet her requirements. Such a path is guaranteed to exist.

    Input

    * Line 1: Two integers, N and M. 

    * Lines 2..M+1: Two integers denoting a pair of fields connected by a path.

    Output

    * Lines 1..2M+1: A list of fields she passes through, one per line, beginning and ending with the barn at field 1. If more than one solution is possible, output any solution.

    Sample Input

    4 5
    1 2
    1 4
    2 3
    2 4
    3 4

    Sample Output

    1
    2
    3
    4
    2
    1
    4
    3
    2
    4
    1

    Hint

    OUTPUT DETAILS: 

    Bessie starts at 1 (barn), goes to 2, then 3, etc...

    Source

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<sstream>
    #include<algorithm>
    #include<queue>
    #include<deque>
    #include<iomanip>
    #include<vector>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<set>
    #include<fstream>
    #include<memory>
    #include<list>
    #include<string>
    using namespace std;
    typedef long long LL;
    typedef unsigned long long ULL;
    #define MAXN 10009
    #define N 50009
    #define MOD 10000007
    #define INF 1000000009
    const double eps = 1e-9;
    const double PI = acos(-1.0);
    
    struct edge
    {
        edge(int _v, bool _vis) :v(_v), vis(_vis){}
        int v;
        bool vis;
    };
    vector<edge> E[MAXN];
    int n, m;
    void DFS(int cur)
    {
        for (int i = 0; i < E[cur].size(); i++)
        {
            if (!E[cur][i].vis)
            {
                E[cur][i].vis = true;    
                DFS(E[cur][i].v);
            }
        }
        printf("%d
    ", cur);
    }
    int main()
    {
        while (scanf("%d%d", &n, &m) != EOF)
        {
            for (int i = 1; i <= n; i++)
                E[i].clear();
            int f, t;
            for (int i = 0; i < m; i++)
                scanf("%d%d", &f, &t), E[f].push_back(edge(t,false)), E[t].push_back(edge(f,false));
            DFS(1);
        }
    }

     上面是有向图的回溯

    下面是无向图。从度最大的点往前回溯

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<vector>
    #include<string>
    #include<map>
    #include<cstring>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define MAXN 55
    #define N 2000
    typedef long long LL;
    
    /*
    无向图的欧拉回路
    从度最大的点开始回溯
    */
    int T, n;
    int g[MAXN][MAXN];
    int degree[MAXN];
    void dfs(int k)
    {
        for (int i = 1; i <= 50; i++)
        {
            if (g[k][i])
            {
                g[k][i]--, g[i][k]--;
                dfs(i);
                printf("%d %d
    ", i, k);
            }
        }
    }
    int main()
    {
        scanf("%d", &T);
        for (int cas = 1; cas <= T; cas++)
        {
            memset(degree, 0, sizeof(degree));
            memset(g, 0, sizeof(g));
            scanf("%d", &n);
            for (int i = 0; i < n; i++)
            {
                int a, b;
                scanf("%d%d", &a, &b);
                g[a][b]++, g[b][a]++;
                degree[a]++, degree[b]++;
            }
            int Max = -1, k = -1;
            bool f = true;
            for (int i = 0; i < MAXN; i++)
            {
                if (degree[i] > Max)
                {
                    Max = degree[i], k = i;
                }
                if (degree[i] % 2 == 1)
                {
                    f = false;
                    break;
                }
            }
            printf("Case #%d
    ", cas);
            if (f)
                dfs(k);
            else
                printf("some beads may be lost
    ");
            if (cas <= T)
                printf("
    ");
        
        }
    }
  • 相关阅读:
    多态性的理解
    类(三)——继承与多态
    类(二)——拷贝控制(浅拷贝,深拷贝,浅赋值,深赋值)
    类 (一) ——基本概念
    STL容器底层数据结构的实现
    异常处理
    C++实现单例模式
    类的成员函数的连续调用与返回值问题
    拷贝构造函数的参数为什么必须使用引用类型?拷贝赋值运算符的参数为什么也是引用类型?
    U盘装机教程
  • 原文地址:https://www.cnblogs.com/joeylee97/p/7269170.html
Copyright © 2011-2022 走看看