zoukankan      html  css  js  c++  java
  • transaction transaction transaction 最大费用最大流转化到SPFA最长路

    //当时比赛的时候没有想到可以用SPFA做,TLE!

    Problem Description
    Kelukin is a businessman. Every day, he travels around cities to do some business. On August 17th, in memory of a great man, citizens will read a book named "the Man Who Changed China". Of course, Kelukin wouldn't miss this chance to make money, but he doesn't have this book. So he has to choose two city to buy and sell. 
    As we know, the price of this book was different in each city. It is ai yuan in it city. Kelukin will take taxi, whose price is 1yuan per km and this fare cannot be ignored.
    There are n1 roads connecting n cities. Kelukin can choose any city to start his travel. He want to know the maximum money he can get.
     
    Input
    The first line contains an integer T (1T10) , the number of test cases. 
    For each test case:
    first line contains an integer n (2n100000) means the number of cities;
    second line contains n numbers, the ith number means the prices in ith city; (1Price10000) 
    then follows n1 lines, each contains three numbers xy and z which means there exists a road between x and y, the distance is zkm (1z1000)
     
    Output
    For each test case, output a single number in a line: the maximum money he can get.
     
    Sample Input
    1 4 10 40 15 30 1 2 30 1 3 2 3 4 10
     
    Sample Output
    8
     
    Source
     
    Recommend
     
     
    liuyiding   |   We have carefully selected several similar problems for you:  6205 6204 6203 6202 6201 
     
     
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<sstream>
    #include<algorithm>
    #include<queue>
    #include<deque>
    #include<iomanip>
    #include<vector>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<set>
    #include<functional>
    #include<fstream>
    #include<memory>
    #include<list>
    #include<string>
    using namespace std;
    typedef long long LL;
    typedef unsigned long long ULL;
    
    //最大费用最大流 简化到SPFA上特例
    const int MAXN = 100000 + 65;
    struct edge
    {
        int to, next, cost;
    }E[MAXN << 2];
    int head[MAXN], tot, n;
    int val[MAXN];
    bool vis[MAXN];
    int lowcost[MAXN];
    void init()
    {
        memset(head, -1, sizeof(head));
        tot = 0;
    }
    void addedge(int u, int v, int d)
    {
        E[tot].to = v;
        E[tot].cost = d;
        E[tot].next = head[u];
        head[u] = tot++;
    }
    int spfa(int st, int ed)
    {
        memset(vis, false, sizeof(vis));
        memset(lowcost, 0, sizeof(lowcost));
        queue<int> q;
        q.push(st);
        vis[st] = true;
        lowcost[st] = 0;
        while (!q.empty())
        {
            int f = q.front();
            q.pop();
            vis[f] = false;
            for (int i = head[f]; i != -1; i = E[i].next)
            {
                int v = E[i].to, d = E[i].cost;
                if (lowcost[v] < lowcost[f] + d)
                {
                    lowcost[v] = lowcost[f] + d;
                    if (!vis[v])
                    {
                        vis[v] = true;
                        q.push(v);
                    }
                }
            }
        }
        return lowcost[ed];
    }
    int main()
    {
        int T;
        scanf("%d", &T);
        while (T--)
        {
            init();
            scanf("%d", &n);
            for (int i = 1; i <= n; i++)
            {
                scanf("%d", &val[i]);
                addedge(0, i, val[i]);
                addedge(i, n + 1, -val[i]);
            }
            int u, v, d;
            for (int i = 0; i < n - 1; i++)
            {
                scanf("%d%d%d", &u, &v, &d);
                addedge(u, v, -d);
                addedge(v, u, -d);
            }
            printf("%d
    ", spfa(0, n + 1));
        }
    }
  • 相关阅读:
    MySQL DROP 大表时的注意事项
    无主键指定字段补全的示例
    GoldenGate的监控
    mysql的root的权限被控制无法授权
    goldengate 过滤对某张表的复制操作
    给用户授予权限时应该尽量避免ANY系统权限
    OGG日常运维监控的自动化脚本模板
    异构GoldenGate 12c 双向复制配置
    异构GoldenGate 12c 单向复制配置(支持DDL复制)
    异构GoldenGate 12c 单向复制配置
  • 原文地址:https://www.cnblogs.com/joeylee97/p/7515544.html
Copyright © 2011-2022 走看看