题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
代码:
1 // 动态规划版 2 class Solution { 3 public: 4 int jumpFloor(int number) { 5 if( number == 0) 6 return 0; 7 else{ 8 int f = 1,g = 1; 9 while(number -- > 0){ 10 g += f; 11 f = g - f; 12 } 13 return f; 14 } 15 } 16 };
我的笔记:
链接:https://www.nowcoder.com/questionTerminal/8c82a5b80378478f9484d87d1c5f12a4
来源:牛客网
对于本题,前提只有 一次 1阶或者2阶的跳法。
a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1);
b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2)
c.由a假设可以得出总跳法为: f(n) = f(n-1) + f(n-2)
d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2
e.可以发现最终得出的是一个斐波那契数列:
| 1, (n=1)
f(n) = | 2, (n=2)
| f(n-1)+f(n-2) ,(n>2,n为整数)