zoukankan      html  css  js  c++  java
  • 460. LFU Cache (solution 1)

    package LeetCode_460
    
    import java.util.*
    import kotlin.collections.HashMap
    
    /**
     * 460. LFU Cache
     * https://leetcode.com/problems/lfu-cache/description/
     *
    Design and implement a data structure for Least Frequently Used (LFU) cache. It should support the following operations: get and put.
    ==get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
    ==put(key, value) - Set or insert the value if the key is not already present.
    When the cache reaches its capacity, it should invalidate the least frequently used item before inserting a new item.
    For the purpose of this problem, when there is a tie (i.e., two or more keys that have the same frequency),the least recently used key would be evicted.
    Note that the number of times an item is used is the number of calls to the get and put functions for that item since it was inserted.
    This number is set to zero when the item is removed.
    
     * Follow up:
    Could you do both operations in O(1) time complexity?
     * */
    
    /*
      solution 1: HashMap+TreeSet, Time complexity:O(logc), Space complexity:O(c), c is capacity;
    * solution 2: HashMap+Double LinkedList, Time complexity:O();
    * O(1): HashMap insert and get;
    * O(1): Double LinkedList: remove the tail, insert into head, move element to head;
    * the key of least frequency will store in the tail
    * */
    
    class CacheNode(key: Int, value: Int, frequency: Int, time: Int) : Comparable<CacheNode> {
        var key = 0
        var value = 0
        var frequency = 0
        var time = 0
    
        init {
            this.key = key
            this.value = value
            this.frequency = frequency
            this.time = time
        }
    
        override fun compareTo(other: CacheNode): Int {
            return if (this.frequency != other.frequency) this.frequency - other.frequency else this.time - other.time
        }
    }
    
    class LFUCache(capacity: Int) {
        /*var head: Node? = null
        var tail: Node? = null*/
        //val values = HashMap<Int, Int>(capacity)
        val cacheMap = HashMap<Int, CacheNode>(capacity)
        val freqTree = TreeSet<CacheNode>()
        var capacity = 0
        var clock = 0
    
        init {
            this.capacity = capacity
        }
    
        fun get(key: Int): Int {
            if (!cacheMap.containsKey(key)) {
                return -1
            }
            val node = cacheMap.get(key)!!
            val value = node.value
            updateFreq(node)
            return value
        }
    
        fun put(key: Int, value: Int) {
            if (capacity == 0) {
                return
            }
            if (cacheMap.containsKey(key)) {
                //key exists: update value and updateFreq
                val node = cacheMap.get(key)!!
                node.value = value
                updateFreq(node)
                return
            }
            //if inserting item when cache is capacity,
            if (cacheMap.size == capacity) {
                //remove the first node in the tree,because it's least frequency or haven't been visited recently
                val first = freqTree.first()
                cacheMap.remove(first.key)
                freqTree.remove(first)
            }
            //create new node
            //clock++,represent in use this moment
            val node = CacheNode(key, value, 1, clock++)
            cacheMap.put(key, node)
            freqTree.add(node)
        }
    
        private fun updateFreq(node: CacheNode) {
            freqTree.remove(node)
            node.time = clock++
            node.frequency++
            freqTree.add(node)
        }
    }
    
    /**
     * Your LFUCache object will be instantiated and called as such:
     * var obj = LFUCache(capacity)
     * var param_1 = obj.get(key)
     * obj.put(key,value)
     */
  • 相关阅读:
    [编程题] 微信红包
    MYSQL实现主从复制
    有关windows系统的EXE和DLL文件说法错误
    Http错误代码
    一步步优化JVM四:决定Java堆的大小以及内存占用
    一步步优化JVM三:GC优化基础
    一步步优化JVM二:JVM部署模型和JVM Runtime
    一步步优化JVM一:概述、方法及需求
    排查Java线上服务故障的方法和实例分析
    【转】Zookeeper-Watcher机制与异步调用原理
  • 原文地址:https://www.cnblogs.com/johnnyzhao/p/13362738.html
Copyright © 2011-2022 走看看