zoukankan      html  css  js  c++  java
  • 解析Hive SQL 底层如何编译

    Hive是什么?Hive 是数据仓库工具,再具体点就是一个 SQL 解析引擎,因为它即不负责存储数据,也不负责计算数据,只负责解析 SQL,记录元数据。

    Hive直接访问存储在 HDFS 中或者 HBase 中的文件,通过 MapReduce、Spark 或 Tez 执行查询。

    我们今天来聊的就是 Hive 底层是怎样将我们写的 SQL 转化为 MapReduce 等计算引擎可识别的程序。了解 Hive SQL 的底层编译过程有利于我们优化Hive SQL,提升我们对Hive的掌控力,同时有能力去定制一些需要的功能。

    Hive 底层执行架构

    我们先来看下 Hive 的底层执行架构图, Hive 的主要组件与 Hadoop 交互的过程:

    Hive底层执行架构

    在 Hive 这一侧,总共有五个组件:

    1. UI:用户界面。可看作我们提交SQL语句的命令行界面。

    2. DRIVER:驱动程序。接收查询的组件。该组件实现了会话句柄的概念。

    3. COMPILER:编译器。负责将 SQL 转化为平台可执行的执行计划。对不同的查询块和查询表达式进行语义分析,并最终借助表和从 metastore 查找的分区元数据来生成执行计划。

    4. METASTORE:元数据库。存储 Hive 中各种表和分区的所有结构信息。

    5. EXECUTION ENGINE:执行引擎。负责提交 COMPILER 阶段编译好的执行计划到不同的平台上。

    上图的基本流程是:

    步骤1:UI 调用 DRIVER 的接口;

    步骤2:DRIVER 为查询创建会话句柄,并将查询发送到 COMPILER(编译器)生成执行计划;

    步骤3和4:编译器从元数据存储中获取本次查询所需要的元数据,该元数据用于对查询树中的表达式进行类型检查,以及基于查询谓词修建分区;

    步骤5:编译器生成的计划是分阶段的DAG,每个阶段要么是 map/reduce 作业,要么是一个元数据或者HDFS上的操作。将生成的计划发给 DRIVER。

    如果是 map/reduce 作业,该计划包括 map operator trees 和一个 reduce operator tree,执行引擎将会把这些作业发送给 MapReduce :

    步骤6、6.1、6.2和6.3:执行引擎将这些阶段提交给适当的组件。在每个 task(mapper/reducer) 中,从HDFS文件中读取与表或中间输出相关联的数据,并通过相关算子树传递这些数据。最终这些数据通过序列化器写入到一个临时HDFS文件中(如果不需要 reduce 阶段,则在 map 中操作)。临时文件用于向计划中后面的 map/reduce 阶段提供数据。

    步骤7、8和9:最终的临时文件将移动到表的位置,确保不读取脏数据(文件重命名在HDFS中是原子操作)。对于用户的查询,临时文件的内容由执行引擎直接从HDFS读取,然后通过Driver发送到UI。

    Hive SQL 编译成 MapReduce 过程

    编译 SQL 的任务是在上节中介绍的 COMPILER(编译器组件)中完成的。Hive将SQL转化为MapReduce任务,整个编译过程分为六个阶段:

    Hive SQL编译过程

    1. 词法、语法解析: Antlr 定义 SQL 的语法规则,完成 SQL 词法,语法解析,将 SQL 转化为抽象语法树 AST Tree;

    Antlr是一种语言识别的工具,可以用来构造领域语言。使用Antlr构造特定的语言只需要编写一个语法文件,定义词法和语法替换规则即可,Antlr完成了词法分析、语法分析、语义分析、中间代码生成的过程。

    1. 语义解析: 遍历 AST Tree,抽象出查询的基本组成单元 QueryBlock;

    2. 生成逻辑执行计划: 遍历 QueryBlock,翻译为执行操作树 OperatorTree;

    3. 优化逻辑执行计划: 逻辑层优化器进行 OperatorTree 变换,合并 Operator,达到减少 MapReduce Job,减少数据传输及 shuffle 数据量;

    4. 生成物理执行计划: 遍历 OperatorTree,翻译为 MapReduce 任务;

    5. 优化物理执行计划: 物理层优化器进行 MapReduce 任务的变换,生成最终的执行计划。

    下面对这六个阶段详细解析:

    为便于理解,我们拿一个简单的查询语句进行展示,对5月23号的地区维表进行查询:

    select * from dim.dim_region where dt = '2021-05-23';

    阶段一:词法、语法解析

    根据Antlr定义的sql语法规则,将相关sql进行词法、语法解析,转化为抽象语法树AST Tree:

    ABSTRACT SYNTAX TREE:
    TOK_QUERY
        TOK_FROM 
        TOK_TABREF
               TOK_TABNAME
                   dim
                     dim_region
        TOK_INSERT
          TOK_DESTINATION
              TOK_DIR
                  TOK_TMP_FILE
            TOK_SELECT
              TOK_SELEXPR
                  TOK_ALLCOLREF
            TOK_WHERE
              =
                  TOK_TABLE_OR_COL
                      dt
                        '2021-05-23'

    阶段二:语义解析

    遍历AST Tree,抽象出查询的基本组成单元QueryBlock:

    AST Tree生成后由于其复杂度依旧较高,不便于翻译为mapreduce程序,需要进行进一步抽象和结构化,形成QueryBlock。

    QueryBlock是一条SQL最基本的组成单元,包括三个部分:输入源,计算过程,输出。简单来讲一个QueryBlock就是一个子查询。

    QueryBlock的生成过程为一个递归过程,先序遍历 AST Tree ,遇到不同的 Token 节点(理解为特殊标记),保存到相应的属性中。

    阶段三:生成逻辑执行计划

    遍历QueryBlock,翻译为执行操作树OperatorTree:

    Hive最终生成的MapReduce任务,Map阶段和Reduce阶段均由OperatorTree组成。

    基本的操作符包括:

    • TableScanOperator
    • SelectOperator
    • FilterOperator
    • JoinOperator
    • GroupByOperator
    • ReduceSinkOperator`

    Operator在Map Reduce阶段之间的数据传递都是一个流式的过程。每一个Operator对一行数据完成操作后之后将数据传递给childOperator计算。

    由于Join/GroupBy/OrderBy均需要在Reduce阶段完成,所以在生成相应操作的Operator之前都会先生成一个ReduceSinkOperator,将字段组合并序列化为Reduce Key/value, Partition Key。

    阶段四:优化逻辑执行计划

    Hive中的逻辑查询优化可以大致分为以下几类:

    • 投影修剪
    • 推导传递谓词
    • 谓词下推
    • 将Select-Select,Filter-Filter合并为单个操作
    • 多路 Join
    • 查询重写以适应某些列值的Join倾斜

    阶段五:生成物理执行计划

    生成物理执行计划即是将逻辑执行计划生成的OperatorTree转化为MapReduce Job的过程,主要分为下面几个阶段:

    1. 对输出表生成MoveTask
    2. 从OperatorTree的其中一个根节点向下深度优先遍历
    3. ReduceSinkOperator标示Map/Reduce的界限,多个Job间的界限
    4. 遍历其他根节点,遇过碰到JoinOperator合并MapReduceTask
    5. 生成StatTask更新元数据
    6. 剪断Map与Reduce间的Operator的关系

    阶段六:优化物理执行计划

    Hive中的物理优化可以大致分为以下几类:

    • 分区修剪(Partition Pruning)
    • 基于分区和桶的扫描修剪(Scan pruning)
    • 如果查询基于抽样,则扫描修剪
    • 在某些情况下,在 map 端应用 Group By
    • 在 mapper 上执行 Join
    • 优化 Union,使Union只在 map 端执行
    • 在多路 Join 中,根据用户提示决定最后流哪个表
    • 删除不必要的 ReduceSinkOperators
    • 对于带有Limit子句的查询,减少需要为该表扫描的文件数
    • 对于带有Limit子句的查询,通过限制 ReduceSinkOperator 生成的内容来限制来自 mapper 的输出
    • 减少用户提交的SQL查询所需的Tez作业数量
    • 如果是简单的提取查询,避免使用MapReduce作业
    • 对于带有聚合的简单获取查询,执行不带 MapReduce 任务的聚合
    • 重写 Group By 查询使用索引表代替原来的表
    • 当表扫描之上的谓词是相等谓词且谓词中的列具有索引时,使用索引扫描

    经过以上六个阶段,SQL 就被解析映射成了集群上的 MapReduce 任务。

    SQL编译成MapReduce具体原理

    在阶段五-生成物理执行计划,即遍历 OperatorTree,翻译为 MapReduce 任务,这个过程具体是怎么转化的呢

    我们接下来举几个常用 SQL 语句转化为 MapReduce 的具体步骤:

    Join的实现原理

    以下面这个SQL为例,讲解 join 的实现:

    select u.name, o.orderid from order o join user u on o.uid = u.uid;

    在map的输出value中为不同表的数据打上tag标记,在reduce阶段根据tag判断数据来源。MapReduce的过程如下:

    MapReduce CommonJoin的实现

    Group By的实现原理

    以下面这个SQL为例,讲解 group by 的实现:

    select rank, isonline, count(*) from city group by rank, isonline;

    将GroupBy的字段组合为map的输出key值,利用MapReduce的排序,在reduce阶段保存LastKey区分不同的key。MapReduce的过程如下:

    MapReduce Group By的实现

    Distinct的实现原理

    以下面这个SQL为例,讲解 distinct 的实现:

    select dealid, count(distinct uid) num from order group by dealid;

    当只有一个distinct字段时,如果不考虑Map阶段的Hash GroupBy,只需要将GroupBy字段和Distinct字段组合为map输出key,利用mapreduce的排序,同时将GroupBy字段作为reduce的key,在reduce阶段保存LastKey即可完成去重:

    MapReduce Distinct的实现

  • 相关阅读:
    ISP整体流程介绍
    Demosiac 去马赛克 (CIP)
    ISP-CMOS图像传感器内部结构及工作原理
    数字图像显示原理
    浅析图像到视频
    摄像机gamma校正
    理解 Pix Binning
    人工智能"眼睛"——摄像头
    CMOS 摄像头的Skipping 和 Binning 模式
    android 向服务器发送json数据,以及发送头信息的三种方式
  • 原文地址:https://www.cnblogs.com/johnvwan/p/15561201.html
Copyright © 2011-2022 走看看