zoukankan      html  css  js  c++  java
  • MySQL B+树索引解析

    索引的本质

    在没有索引的情况下,查找数据只能按照从头到尾的顺序逐行查找,每查找一行数据,意味着我们要到到磁盘相应的位置去读取一条数据。如果把查询一条数据分为到磁盘中查询和比对查询条件两步的话,到磁盘中查询的时间会远远大于比对查询条件的时间,这意味着在一次查询中,磁盘io占用了大部分的时间。更进一步地说,一次查询的效率取绝于磁盘io的次数,如果我们能够在一次查询中尽可能地降低磁盘io的次数,那么我们就能加快查询的速度。在知道了减少磁盘io能加快查询速度后,我们就要聚焦于如何减少磁盘io。如果按照原表逐行查询的话,n条数据就要查询n次,也就是O(N)的时间复杂度,为了减少磁盘io的次数,我们必须用一种查询时间复杂度更低的数据结构来保存数据。这种查询时间复杂度低的数据结构,我们称之为索引。所以通俗来说,索引其实就是某种数据结构,能充当索引的数据结构是多种多样的。 

    索引的选择

    既然索引是一种便于查询的数据结构,如果对数据结构有一定了解的话,大概率会首选树型结构。毕竟树型结构普遍有着O(logN)的查询时间复杂度,而且插入删除数据的性能也比较平均。可能会说数组,哈希表的查询速度也很高啊,这个后面会有分析。
    虽然我们都已经知道Mysql中最常用的引擎像InnoDB和MyISAM,最终都选择了B+树作为索引,但是这里先从最常见的二叉树开始讲起,推导一下为什么最终选择了B+树作为索引,并比较一下几种树型结构在充当索引时的优劣。

    二叉树

    最普通的二叉树的问题在于他不能保证O(logN)的查询时间复杂度,看下面的图: 
    0
    由于插入的元素逐渐增大,元素始终在右边进行插入,好好的一棵二叉树最终变成了一条“链表”。在这种极端的情况下,二叉树的查询时间复杂度不再是O(logN),而是退化为O(N),这样显然不符合索引的要求。

    平衡二叉树(红黑树)

    像红黑树这样的平衡二叉树,无论如何插入元素,他都可以通过一些旋转的方法调整树的高度,使得整棵树的查询效率维持在O(logN),如下图所示:  
    0
    这么来说他已经符合了成为索引的必备条件,但是最终没有选择他作为索引说明还有不足的地方。仔细看看可以发现平衡二叉树的每个节点只有两个孩子节点,如果一张表的数据量特别大,整棵树的高度也会随之上升。一个千万级别的表如果用平衡二叉树作为索引的话,树高将会达到二十多层。这也就意味着做一次查询需要二十多次磁盘io,这是一个不小的开销。
    那么有没有能在大数据量的情况下,还能保持一个较小树高的树型结构呢?

    B树和B+树

    答案就是B树。上面我们说到了平衡二叉树的瓶颈在于一个节点只有两个孩子节点,而B树一个节点可以存放N个孩子节点,这就完美解决了树高的问题,我们可以把B树称为平衡多叉树,B树作为索引如下图所示 
    0
    但是以B树的结构作为索引仍有可以优化的地方,我们先看看最终的B+树,再仔细分析B+树在B树的基础上作了哪些改进,为什么B+树最终能够胜任索引的工作: 
    0
    从图片中可以看到B+树同样是一棵多差平衡树,和B树一样很好地解决了树高的问题。

    改进点一:

    但仔细看可以发现,B树的节点中既存储索引,也存储表对应的数据;而B+树的非叶子节点是不存储数据的,只存储索引,数据全部存储在叶子节点上。
    为什么要做这样的改进?做一次算术就知道了。
    假设树高为2,主键ID为bigint类型,长度为8字节,节点指针为6字节,一行数据记录的大小为1k,一次io操作能获得一页16k的数据。
    在索引为B+树的情况下,根节点能存储:16k / (6 + 8) = 1170 条索引指针;到了第一层,一共能指向 1170 * 1170 = 1368900 条索引指针;到了最底一层叶子节点,一个节点能存储16k / 1k = 16 条记录,一共能存储 1170 * 1170 * 16 = 21902400 条记录
    在B树的情况下,由于非叶子节点使用了大量空间存储数据,存放的索引指针肯定就少,最终整棵树如果想要存储和B+树一样多的数据就必须要增加树高,这样一来就增加了磁盘io,所以说B+树作为索引的性能比B树高。

    改进点二:

    叶子节点之间使用指针连接,提高区间访问效率。如果我们要进行范围查询,可以轻松通过B+树叶子节点之间的指针进行遍历,减少了不必要的磁盘io。 

    总结

    看到这里,相信对为什么Mysql的常用引擎都默认使用B+树作为索引已经有了初步的认知。只要牢记一点:索引是为了减少磁盘io提高查询性能而存在的。
    那么,为什么不常用哈希表和数组作为索引呢?哈希表虽然单一个值的查询效率很高,但是撑不住范围查询,哪个公司的业务还没个范围查询呢?而数组虽然查询的效率高,但是增加和删除的效率低,由于记录在增加和删除的时候索引也得跟着维护,这会导致大数据量的情况下,增加或删除一条记录效率较低。
  • 相关阅读:
    8.10
    今日头条笔试题 1~n的每个数,按字典序排完序后,第m个数是什么?
    Gym 100500B Conference Room(最小表示法,哈希)
    CodeForces 438D The Child and Sequence(线段树)
    UVALIVE 6905 Two Yachts(最小费用最大流)
    Gym Conference Room (最小表示法,哈希)
    hdu 2389 Rain on your Parade(二分图HK算法)
    Codeforces Fox And Dinner(最大流)
    zoj 3367 Counterfeit Money(dp)
    ZOJ3370. Radio Waves(2-sat)
  • 原文地址:https://www.cnblogs.com/johnvwan/p/15638796.html
Copyright © 2011-2022 走看看