zoukankan      html  css  js  c++  java
  • 【笔记】实现逻辑回归算法

    实现逻辑回归算法

    实现代码

    在python chame中创建LogisticRegression.py文件,写入想要实现的功能

    其中,可以将原先的LinearRegression复制过来,详情可见以前的关于线性回归的博客,修改类名,不用的功能直接删除,添加上sigmoid函数以及计算结果概率向量的函数,对损失函数的计算,梯度的计算,预测结果进行修改,使用这里的计算思想即可

    代码如下:

      import numpy as np
      from metrics import accuracy_score
    
    
      class LogisticRegression:
    
          def __init__(self):
              """初始化Logistic Regression模型"""
              self.coef_ = None
              self.interception_ = None
              self._theta = None
    
          def _sigmoid(self,t):
              return 1. / (1. + np.exp(-t))
    
    
          def fit(self, X_train, y_train, eta=0.01, n_iters=1e4):
              """根据训练数据集使用梯度算法训练模型"""
              assert X_train.shape[0] == y_train.shape[0], 
                  "the size of X_train must be equal to the size of y_train"
    
              def J(theta, X_b, y):
                  y_hat = self._sigmoid(X_b.dot(theta))
                  try:
                      return -np.sum(y*np.log(y_hat) + (1-y)*np.log(1-y_hat)) / len(y)
                  except:
                      return float('inf')
    
              def dJ(theta, X_b, y):
    
                  return X_b.T.dot(self._sigmoid(X_b.dot(theta)) - y) / len(X_b)
    
              def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e4, epsilon=1e-8):
    
                  theta = initial_theta
                  cur_iter = 0
    
                  while cur_iter < n_iters:
                      gradient = dJ(theta, X_b, y)
                      last_theta = theta
                      theta = theta - eta * gradient
                      if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
                          break
      
                      cur_iter += 1
    
                  return theta
    
              X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
              initial_theta = np.zeros(X_b.shape[1])
              self._theta = gradient_descent(X_b, y_train, initial_theta, eta, n_iters)
    
              self.interception_ = self._theta[0]
              self.coef_ = self._theta[1:]
    
              return self
    
          def predict(self, X_predict):
              """给定待预测数据集X_predict, 返回表示X_predict的结果向量"""
              assert self.interception_ is not None and self.coef_ is not None, 
                  "must fit before predict!"
              assert X_predict.shape[1] == len(self.coef_), 
                  "the feature number of x_predict must be equal to X_train"
    
              proba = self.predict_proba(X_predict)
              return np.array(proba >= 0.5,dtype='int')
    
          def predict_proba(self, X_predict):
              """给定待预测数据集X_predict, 返回表示X_predict的结果概率向量"""
              assert self.interception_ is not None and self.coef_ is not None, 
                  "must fit before predict!"
              assert X_predict.shape[1] == len(self.coef_), 
                  "the feature number of x_predict must be equal to X_train"
    
              X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
              return self._sigmoid(X_b.dot(self._theta))
    
    
          def score(self, X_test, y_test):
              """根据测试数据集X_test和y_test确定当前模型的准确度"""
    
              y_predict = self.predict(X_test)
              return accuracy_score(y_test, y_predict)
    
          def __repr__(self):
              return "LogisticRegression()"
    
    
          from matplotlib.colors import ListedColormap
          def plot_decision_boundary(model, axis):
    
              x0 = np.meshgrid(np.linspace(axis[2], axis[3], int((axis[3] - axis[2]) * 100)).reshape())
              x1 = np.meshgrid(np.linspace(axis[0], axis[1], int((axis[1] - axis[0]) * 100)).reshape())
              X_new = np.c_[x0.ravel(), x1.ravel()]
    
              y_predict = model.predict(X_new)
              zz = y_predict.reshape(x0.shape)
              custom_cmap = ListedColormap(['#EF9A9A', '#FFF59D', '#90CAF9'])
    
              plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
    

    具体使用

    (在notebook中)

    加载上相应的包,使用鸢尾花数据集,由于其有三种分类,因此只选用y<2的行,且只取前两个特征,并绘制图像

      import numpy as np
      import matplotlib.pyplot as plt
      from sklearn import datasets
    
      iris = datasets.load_iris()
    
      X = iris.data
      y = iris.target
    
      X = X[y<2,:2]
      y = y[y<2]
    
      plt.scatter(X[y==0,0],X[y==0,1],color='red')
      plt.scatter(X[y==1,0],X[y==1,1],color='blue')
    

    图像如下

    分割好数据集以后(使用种子666),调用封装好的方法,进行实例化以后对训练数据集进行fit操作

      from model_selection import train_test_split
    
      X_train,X_test,y_train,y_test = train_test_split(X,y,seed=666)
    
      from LogisticRegression import LogisticRegression
    
      log_reg = LogisticRegression()
      log_reg.fit(X_train,y_train)
    

    使用代码计算分类结果

      log_reg.score(X_test,y_test)
    

    结果如下

    分类结果中的数据

      log_reg.predict_proba(X_test)
    

    结果如下

    其中y_test中为

    然后使用概率矩阵以后的真正得到的log_reg.predict(X_test)中的结果如下

    以上为实现的逻辑回归算法的简单的应用

  • 相关阅读:
    转专业不设门槛 浙江工商职院把选择权交给学生
    软件开发方法:
    抽签系统
    软件生命周期。
    软件测试的意义!
    课程不明白的问题?
    目前流行的源程序版本管理软件和项目管理软件有哪些,各有什么缺点?
    自我介绍
    结对编程的利与弊
    第三周目标随笔
  • 原文地址:https://www.cnblogs.com/jokingremarks/p/14321021.html
Copyright © 2011-2022 走看看