zoukankan      html  css  js  c++  java
  • Ubuntu 下 glpk 的安装及使用

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4156204.html

    glpk是一个开源的求解线性规划的包。

    添加源:

    deb http://us.archive.ubuntu.com/ubuntu saucy main universe

    更新源并安装:

    sudo apt-get update

    sudo apt-get install glpk

     写入如下glpsolEx.mod 文件

     1 /* Variables */
     2 var x1 >= 0;
     3 var x2 >= 0;
     4 var x3 >= 0;
     5 
     6 /* Object function */
     7 maximize z: x1 + 14*x2 + 6*x3;
     8 
     9 /* Constrains */
    10 s.t. con1: x1 + x2 + x3 <= 4;
    11 s.t. con2: x1  <= 2;
    12 s.t. con3: x3  <= 3;
    13 s.t. con4: 3*x2 + x3  <= 6;
    14 
    15 end;

    运行 glpsol -m glpsolEx.mod -o glpsolEx.sol,输出到glpsolEx.sol文件中

    结果为:

     1 Problem:    glpsolEx
     2 Rows:       5
     3 Columns:    3
     4 Non-zeros:  10
     5 Status:     OPTIMAL
     6 Objective:  z = 32 (MAXimum)
     7 
     8    No.   Row name   St   Activity     Lower bound   Upper bound    Marginal
     9 ------ ------------ -- ------------- ------------- ------------- -------------
    10      1 z            B             32                             
    11      2 con1         NU             4                           4             2 
    12      3 con2         B              0                           2 
    13      4 con3         B              3                           3 
    14      5 con4         NU             6                           6             4 
    15 
    16    No. Column name  St   Activity     Lower bound   Upper bound    Marginal
    17 ------ ------------ -- ------------- ------------- ------------- -------------
    18      1 x1           NL             0             0                          -1 
    19      2 x2           B              1             0               
    20      3 x3           B              3             0               
    21 
    22 Karush-Kuhn-Tucker optimality conditions:
    23 
    24 KKT.PE: max.abs.err = 0.00e+00 on row 0
    25         max.rel.err = 0.00e+00 on row 0
    26         High quality
    27 
    28 KKT.PB: max.abs.err = 4.44e-16 on row 4
    29         max.rel.err = 1.11e-16 on row 4
    30         High quality
    31 
    32 KKT.DE: max.abs.err = 0.00e+00 on column 0
    33         max.rel.err = 0.00e+00 on column 0
    34         High quality
    35 
    36 KKT.DB: max.abs.err = 0.00e+00 on row 0
    37         max.rel.err = 0.00e+00 on row 0
    38         High quality
    39 
    40 End of output

    帮助文档中一个求解八皇后的例子:

     1 /* QUEENS, a classic combinatorial optimization problem */
     2 
     3 /* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
     4 
     5 /* The Queens Problem is to place as many queens as possible on the 8x8
     6    (or more generally, nxn) chess board in a way that they do not fight
     7    each other. This problem is probably as old as the chess game itself,
     8    and thus its origin is not known, but it is known that Gauss studied
     9    this problem. */
    10 
    11 param n, integer, > 0, default 8;
    12 /* size of the chess board */
    13 
    14 var x{1..n, 1..n}, binary;
    15 /* x[i,j] = 1 means that a queen is placed in square [i,j] */
    16 
    17 s.t. a{i in 1..n}: sum{j in 1..n} x[i,j] <= 1;
    18 /* at most one queen can be placed in each row */
    19 
    20 s.t. b{j in 1..n}: sum{i in 1..n} x[i,j] <= 1;
    21 /* at most one queen can be placed in each column */
    22 
    23 s.t. c{k in 2-n..n-2}: sum{i in 1..n, j in 1..n: i-j == k} x[i,j] <= 1;
    24 /* at most one queen can be placed in each ""-diagonal */
    25 
    26 s.t. d{k in 3..n+n-1}: sum{i in 1..n, j in 1..n: i+j == k} x[i,j] <= 1;
    27 /* at most one queen can be placed in each "/"-diagonal */
    28 
    29 maximize obj: sum{i in 1..n, j in 1..n} x[i,j];
    30 /* objective is to place as many queens as possible */
    31 
    32 /* solve the problem */
    33 solve;
    34 
    35 /* and print its optimal solution */
    36 for {i in 1..n}
    37 {  for {j in 1..n} printf " %s", if x[i,j] then "Q" else ".";
    38    printf("
    ");
    39 }
    40 
    41 end;
  • 相关阅读:
    jquery实现选项卡(两句即可实现)
    常用特效积累
    jquery学习笔记
    idong常用js总结
    织梦添加幻灯片的方法
    LeetCode "Copy List with Random Pointer"
    LeetCode "Remove Nth Node From End of List"
    LeetCode "Sqrt(x)"
    LeetCode "Construct Binary Tree from Inorder and Postorder Traversal"
    LeetCode "Construct Binary Tree from Preorder and Inorder Traversal"
  • 原文地址:https://www.cnblogs.com/jostree/p/4156204.html
Copyright © 2011-2022 走看看