zoukankan      html  css  js  c++  java
  • 混合溶剂中的高分子凝胶理论推导

    参考资料:THE JOURNAL OF CHEMICAL PHYSICS 137, 024902 (2012)

    高分子凝胶的自由能(F)有两项,混合项(F_{mix})和弹性项(F_{el})

    egin{equation} F=F_{mix}+F_{el} label{Fen} end{equation}

    两种混合溶剂中的高分子凝胶,混合自由能为

    egin{equation} F_{mix}=frac{k_BT}{v_0}left[ V_g f(phi_{1g},phi_{2g},phi_3)+V_s f(phi_{1s},phi_{2s},0) ight ] label{Fmix} end{equation}

    其中,(V_g)(V_s) 分别为凝胶和凝胶外部溶液的体积,(v_0)为单体和溶剂分子的体积,(f(phi_{1},phi_{2},phi_3))为Flory-Huggins混合自由能:

    egin{equation} f(phi_{1},phi_{2},phi_3)=phi_{1}lnphi_{1}+phi_{2}lnphi_{2}+sum_{ilt j}chi_{ij}phi_iphi_j label{FH} end{equation}

    其中,(phi_{1})(phi_{2})分别为溶剂分子的体积分数,下标(phi_{ig})(phi_{is})分别表示第(i)(i=1,2))种组分凝胶内外的体积分数,(phi_{3})表示高分子网络的体积分数,(chi_{ij})(i)(j)两种组分的相互作用参数。

    高分子网络的熵弹性能为

    egin{equation} F_{el}=frac{1}{2}k_BT u V_{g0}left[ 3left ( frac{phi_{30}}{phi_3} ight )^{2/3}-2Blnleft ( frac{phi_{30}}{phi_3} ight ) ight ] label{Fel} end{equation}

    其中,(V_{g0}) 为处于参考态的凝胶的体积,( u) 为交联点密度,(B) 为非线性弹性系数,(phi_{30}) 为处于参考态的凝胶的体积分数。

    凝胶内外满足不可压缩性条件:

    egin{equation} phi_{1g}+phi_{2g}+phi_3=1 label{Incom1} end{equation}

    egin{equation} phi_{1s}+phi_{2s}=1 label{Incom2} end{equation}

    可定义如下巨势:

    egin{equation} Omega=F_{mix}+F_{el}-mu_2(V_gphi_{2g}+V_sphi_{2s})+kappa (V_g+V_s) label{Grand} end{equation}

    其中,(mu_2)(kappa) 分别为保证第二种组分和总体积不变的拉格朗日乘子。对巨势求极小可得平衡态:

    egin{equation} frac{partial Omega}{partial phi_{2g}}=frac{partial Omega}{partial phi_{2s}}=0 label{Mini1} end{equation}

    egin{equation} frac{partial Omega}{partial V_g}=frac{partial Omega}{partial V_s}=0 label{Mini2} end{equation}

    egin{equation*} frac{partial Omega}{partial phi_{2g}}=frac{partial F_{mix}}{partial phi_{2g}}-mu_2V_g=frac{k_BT}{v_0}V_gfrac{partial f}{partial phi_{2g}}-mu_2V_g=0 end{equation*}

    于是得

    egin{equation*} ilde{mu}(phi_{2g},phi_3)=frac{partial f}{partial phi_{2g}}=frac{v_0mu_2 }{k_BT} end{equation*}

    同理,由(frac{partial Omega}{partial phi_{2s}}=0)可得

    egin{equation*} ilde{mu}(phi_{2s},0)=frac{partial f}{partial phi_{2s}}=frac{v_0mu_2 }{k_BT} end{equation*}

    由方程eqref{Incom1}和eqref{Incom2},可将eqref{FH}化为:

    egin{equation*} egin{split} f(phi_{2},phi_3)=&(1-phi_{2}-phi_3)ln(1-phi_{2}-phi_3)+phi_{2}lnphi_{2}\ &+chi_{12}(1-phi_{2}-phi_3)phi_2 +chi_{13}(1-phi_{2}-phi_3)phi_3+chi_{23}phi_2phi_3 end{split} end{equation*}

    于是得

    egin{equation} ilde{mu}(phi_{2},phi_{3})=lnfrac{phi_2}{1-phi_2-phi_3}+chi_{12}(1-2phi_2-phi_3)+(chi_{23}-chi_{13})phi_3 label{ChemPot} end{equation}

    下面再看方程eqref{Mini2},

    egin{equation} frac{partial Omega}{partial V_g}=frac{partial F_{mix}}{partial V_g}+frac{partial F_{el}}{partial V_g}+kappa=0 label{POV} end{equation}

    方程eqref{POV}中第一项

    egin{equation} frac{partial F_{mix}}{partial V_g}=frac{k_BT}{v_0}left [f(phi_{2g},phi_3)+V_gfrac{partial f(phi_{2g},phi_3)}{partial V_g} ight ] label{PFmVg1} end{equation}

    其中,

    egin{equation*} egin{split} V_gfrac{partial f(phi_{2g},phi_3)}{partial V_g}=& -phi_{2g}frac{partial f(phi_{2g},phi_3)}{partial phi_{2g}}-phi_{3}frac{partial f(phi_{2g},phi_3)}{partial phi_{3}} \ =&-(phi_{2g}+phi_3)ln(1-phi_{2g}-phi_3)-phi_{2g}lnphi_{2g}\ &-chi_{12}(1-phi_{2g}-phi_3)phi_{2g}+chi_{12}phi_{2g}^2+chi_{13}phi_{2g}phi_3\ &-chi_{23}phi_{2g}phi_3+phi_3+chi_{12}phi_{2g}phi_3+chi_{13}phi_3^2\ &-chi_{13}(1-phi_{2g}-phi_3)phi_3-chi_{23}phi_2phi_3 end{split} end{equation*}

    代入方程eqref{PFmVg1},得

    egin{equation} egin{split} frac{partial F_{mix}}{partial V_g}left (frac{k_BT}{v_0} ight )^{-1}=& ln(1-phi_2-phi_3)+phi_3\ &+chi_{12}phi_{2g}^2+chi_{13}phi_{3}^2\ &-(chi_{23}-chi_{12}-chi_{13})phi_{2g}phi_3 end{split} label{PFmVg2} end{equation}

    方程eqref{POV}中第二项

    egin{equation} egin{split} frac{partial F_{el}}{partial V_g}=&frac{partial F_{el}}{partial phi_3}frac{partial phi_3}{partial V_g }=-frac{phi_3}{V_g}frac{partial F_{el}}{partial phi_3}\ =&-k_BT u phi_3 frac{V_{g0}}{V_g}left [-left (frac{phi_{30}}{phi_3} ight )^{2/3}frac{1}{phi_3}+frac{B}{phi_3} ight ]\ =&k_BT u left [left (frac{phi_{3}}{phi_{30}} ight )^{1/3}-Bfrac{phi_{3}}{phi_{30}} ight ] end{split} label{PFelVg} end{equation}

    方程eqref{Mini2}中第二个偏导的结果为

    egin{equation} frac{partial Omega}{partial V_s}=frac{partial F_{mix}}{partial V_s}+kappa=0 label{POVs} end{equation}

    其中

    egin{equation} egin{split} frac{partial F_{mix}}{partial V_s}=&frac{k_BT}{v_0}left [f(phi_{2s},0)+V_sfrac{partial f(phi_{2s},0)}{partial V_s} ight ]\ =&frac{k_BT}{v_0}left [ln(1-phi_{2s})+chi_{12}phi_{2s}^2 ight] end{split} label{PFmVs} end{equation}

    综上,凝胶平衡态结构由如下方程给出:

    egin{equation} egin{split} &lnfrac{phi_{2g}}{1-phi_{2g}-phi_3}+chi_{12}(1-2phi_{2g}-phi_3)+(chi_{23}-chi_{13})phi_3=\ &lnfrac{phi_{2s}}{1-phi_{2s}}+chi_{12}(1-2phi_{2s}) end{split} label{Struc1} end{equation}

    egin{equation} egin{split} &ln(1-phi_{2s})-ln(1-phi_{2g}-phi_3)-phi_3\ &-chi_{12}(phi_{2s}^2-phi_{2g}^2)-chi_{13}phi_3^2+(chi_{23}-chi_{12}-chi_{13})phi_{2g}phi_3\ &- u v_0 left [left (frac{phi_{3}}{phi_{30}} ight )^{1/3}-Bfrac{phi_{3}}{phi_{30}} ight ]=0 end{split} label{Struc2} end{equation}

  • 相关阅读:
    RMQ 算法入门
    hdu1535——Invitation Cards
    LeetCode 206. Reverse Linked List(迭代和递归两种实现)
    CSDN开源夏令营 基于Compiz的switcher插件设计与实现之前期准备 git的简单使用
    xml初学简单介绍
    do{}while(0)与CC_BREAK_IF的绝妙搭配
    《Python基础教程》第20章学习笔记
    oracle启动过程2
    Javascript 笔记与总结(1-6)Javascript 面向对象
    [Swift]LeetCode44. 通配符匹配 | Wildcard Matching
  • 原文地址:https://www.cnblogs.com/joyfulphysics/p/4943615.html
Copyright © 2011-2022 走看看