zoukankan      html  css  js  c++  java
  • JDK8 Stream 数据流效率分析

    JDK8 Stream 数据流效率分析

    Stream 是Java SE 8类库中新增的关键抽象,它被定义于 java.util.stream (这个包里有若干流类型: Stream<T> 代表对象引用流,此外还有一系列特化流,如 IntStream,LongStream,DoubleStream等 ),Java 8 引入的的Stream主要用于取代部分Collection的操作,每个流代表一个值序列,流提供一系列常用的聚集操作,可以便捷的在它上面进行各种运算。集合类库也提供了便捷的方式使我们可以以操作流的方式使用集合、数组以及其它数据结构;

    stream 的操作种类

    ①中间操作 

    - 当数据源中的数据上了流水线后,这个过程对数据进行的所有操作都称为“中间操作”;
    - 中间操作仍然会返回一个流对象,因此多个中间操作可以串连起来形成一个流水线;
    - stream 提供了多种类型的中间操作,如 filter、distinct、map、sorted 等等;

    ②终端操作 

    - 当所有的中间操作完成后,若要将数据从流水线上拿下来,则需要执行终端操作;

    - stream 对于终端操作,可以直接提供一个中间操作的结果,或者将结果转换为特定的 collection、array、String 等;

    这一部分详细的说明可以参见:JDK8 Stream 详细使用

    stream 的特点

    ①只能遍历一次:

    数据流的从一头获取数据源,在流水线上依次对元素进行操作,当元素通过流水线,便无法再对其进行操作,可以重新在数据源获取一个新的数据流进行操作;

    ②采用内部迭代的方式:

    对Collection进行处理,一般会使用 Iterator 遍历器的遍历方式,这是一种外部迭代;

    而对于处理Stream,只要申明处理方式,处理过程由流对象自行完成,这是一种内部迭代,对于大量数据的迭代处理中,内部迭代比外部迭代要更加高效;

    stream 相对于 Collection 的优点

    • 无存储:流并不存储值;流的元素源自数据源(可能是某个数据结构、生成函数或I/O通道等等),通过一系列计算步骤得到;
    • 函数式风格:对流的操作会产生一个结果,但流的数据源不会被修改;
    • 惰性求值:多数流操作(包括过滤、映射、排序以及去重)都可以以惰性方式实现。这使得我们可以用一遍遍历完成整个流水线操作,并可以用短路操作提供更高效的实现;
    • 无需上界:不少问题都可以被表达为无限流(infinite stream):用户不停地读取流直到满意的结果出现为止(比如说,枚举 完美数 这个操作可以被表达为在所有整数上进行过滤);集合是有限的,但流可以表达为无线流;
    • 代码简练:对于一些collection的迭代处理操作,使用 stream 编写可以十分简洁,如果使用传统的 collection 迭代操作,代码可能十分啰嗦,可读性也会比较糟糕;

    stream 和 iterator 迭代的效率比较

    好了,上面 stream 的优点吹了那么多,stream 函数式的写法是很舒服,那么 steam 的效率到底怎样呢?

    先说结论:

    - 传统 iterator (for-loop) 比 stream(JDK8) 迭代性能要高,尤其在小数据量的情况下;

    - 在多核情景下,对于大数据量的处理,parallel stream 可以有比 iterator 更高的迭代处理效率;


    我分别对一个随机数列 List (数量从 10 到 10000000)进行映射、过滤、排序、规约统计、字符串转化场景下,对使用 stream 和 iterator 实现的运行效率进行了统计,测试代码 基准测试代码链接

    测试环境如下:

    System:Ubuntu 16.04 xenial

    CPU:Intel Core i7-8550U

    RAM:16GB

    JDK version:1.8.0_151

    JVM:HotSpot(TM) 64-Bit Server VM (build 25.151-b12, mixed mode)

    JVM Settings:

        -Xms1024m

        -Xmx6144m

        -XX:MaxMetaspaceSize=512m

        -XX:ReservedCodeCacheSize=1024m

        -XX:+UseConcMarkSweepGC

        -XX:SoftRefLRUPolicyMSPerMB=100

    1. 映射处理测试

    把一个随机数列(List<Integer>)中的每一个元素自增1后,重新组装为一个新的 List<Integer>,测试的随机数列容量从 10 - 10000000,跑10次取平均时间;

    1. //stream
    2. List<Integer> result = list.stream()
    3. .mapToInt(x -> x)
    4. .map(x -> ++x)
    5. .boxed()
    6. .collect(Collectors.toCollection(ArrayList::new));
    7. //iterator
    8. List<Integer> result = new ArrayList<>();
    9. for(Integer e : list){
    10. result.add(++e);
    11. }
    12. //parallel stream
    13. List<Integer> result = list.parallelStream()
    14. .mapToInt(x -> x)
    15. .map(x -> ++x)
    16. .boxed()
    17. .collect(Collectors.toCollection(ArrayList::new));

    2. 过滤处理测试

    取出一个随机数列(List<Integer>)中的大于 200 的元素,并组装为一个新的 List<Integer>,测试的随机数列容量从 10 - 10000000,跑10次取平均时间;

    1. //stream
    2. List<Integer> result = list.stream()
    3. .mapToInt(x -> x)
    4. .filter(x -> x > 200)
    5. .boxed()
    6. .collect(Collectors.toCollection(ArrayList::new));
    7. //iterator
    8. List<Integer> result = new ArrayList<>(list.size());
    9. for(Integer e : list){
    10. if(e > 200){
    11. result.add(e);
    12. }
    13. }
    14. //parallel stream
    15. List<Integer> result = list.parallelStream()
    16. .mapToInt(x -> x)
    17. .filter(x -> x > 200)
    18. .boxed()
    19. .collect(Collectors.toCollection(ArrayList::new));

    3. 自然排序测试

    对一个随机数列(List<Integer>)进行自然排序,并组装为一个新的 List<Integer>,iterator 使用的是 Collections # sort API(使用归并排序算法实现),测试的随机数列容量从 10 - 10000000,跑10次取平均时间;

    1. //stream
    2. List<Integer> result = list.stream()
    3. .mapToInt(x->x)
    4. .sorted()
    5. .boxed()
    6. .collect(Collectors.toCollection(ArrayList::new));
    7. //iterator
    8. List<Integer> result = new ArrayList<>(list);
    9. Collections.sort(result);
    10. //parallel stream
    11. List<Integer> result = list.parallelStream()
    12. .mapToInt(x->x)
    13. .sorted()
    14. .boxed()
    15. .collect(Collectors.toCollection(ArrayList::new));

    4. 归约统计测试

    获取一个随机数列(List<Integer>)的最大值,测试的随机数列容量从 10 - 10000000,跑10次取平均时间;

    1. //stream
    2. int max = list.stream()
    3. .mapToInt(x -> x)
    4. .max()
    5. .getAsInt();
    6. //iterator
    7. int max = -1;
    8. for(Integer e : list){
    9. if(e > max){
    10. max = e;
    11. }
    12. }
    13. //parallel stream
    14. int max = list.parallelStream()
    15. .mapToInt(x -> x)
    16. .max()
    17. .getAsInt();

    5. 字符串拼接测试

    获取一个随机数列(List<Integer>)各个元素使用“,”分隔的字符串,测试的随机数列容量从 10 - 10000000,跑10次取平均时间;

    1. //stream
    2. String result = list.stream().map(String::valueOf).collect(Collectors.joining(","));
    3. //iterator
    4. StringBuilder builder = new StringBuilder();
    5. for(Integer e : list){
    6. builder.append(e).append(",");
    7. }
    8. String result = builder.length() == 0 ? "" : builder.substring(0,builder.length() - 1);
    9. //parallel stream
    10. String result = list.stream().map(String::valueOf).collect(Collectors.joining(","));

    6. 混合操作测试

    对一个随机数列(List<Integer>)进行去空值,除重,映射,过滤,并组装为一个新的 List<Integer>,测试的随机数列容量从 10 - 10000000,跑10次取平均时间;

    1. //stream
    2. List<Integer> result = list.stream()
    3. .filter(Objects::nonNull)
    4. .mapToInt(x -> x + 1)
    5. .filter(x -> x > 200)
    6. .distinct()
    7. .boxed()
    8. .collect(Collectors.toCollection(ArrayList::new));
    9. //iterator
    10. HashSet<Integer> set = new HashSet<>(list.size());
    11. for(Integer e : list){
    12. if(e != null && e > 200){
    13. set.add(e + 1);
    14. }
    15. }
    16. List<Integer> result = new ArrayList<>(set);
    17. //parallel stream
    18. List<Integer> result = list.parallelStream()
    19. .filter(Objects::nonNull)
    20. .mapToInt(x -> x + 1)
    21. .filter(x -> x > 200)
    22. .distinct()
    23. .boxed()
    24. .collect(Collectors.toCollection(ArrayList::new));

    实验结果总结

    从以上的实验来看,可以总结处以下几点:

    - 在少低数据量的处理场景中(size<=1000),stream 的处理效率是不如传统的 iterator 外部迭代器处理速度快的,但是实际上这些处理任务本身运行时间都低于毫秒,这点效率的差距对普通业务几乎没有影响,反而 stream 可以使得代码更加简洁;

    - 在大数据量(szie>10000)时,stream 的处理效率会高于 iterator,特别是使用了并行流,在cpu恰好将线程分配到多个核心的条件下(当然parallel stream 底层使用的是 JVM 的 ForkJoinPool,这东西分配线程本身就很玄学),可以达到一个很高的运行效率,然而实际普通业务一般不会有需要迭代高于10000次的计算;

    - Parallel Stream 受引 CPU 环境影响很大,当没分配到多个cpu核心时,加上引用 forkJoinPool 的开销,运行效率可能还不如普通的 Stream;

    使用 Stream 的建议

    - 简单的迭代逻辑,可以直接使用 iterator,对于有多步处理的迭代逻辑,可以使用 stream,损失一点几乎没有的效率,换来代码的高可读性是值得的

    - 单核 cpu 环境,不推荐使用 parallel stream,在多核 cpu 且有大数据量的条件下,推荐使用 paralle stream;

    - stream 中含有装箱类型,在进行中间操作之前,最好转成对应的数值流,减少由于频繁的拆箱、装箱造成的性能损失;

    原文地址:https://blog.csdn.net/Al_assad/article/details/82356606

  • 相关阅读:
    git爬坑不完全指北(二):failed to push some refs to ‘XXX’的解决方案
    javascript精雕细琢(三):作用域与作用域链
    javascript精雕细琢(二):++、--那点事
    git爬坑不完全指北(一):Permission to xxx.git denied to user的解决方案
    深入浅出CSS(三):隐藏BOSS大盘点之默认属性小总结
    读书笔记
    MPP5运维手册
    HTML自闭合(self-closing)标签
    Mysql JDBC的通信协议(报文的格式和基本类型)
    详解 & 0xff 的作用
  • 原文地址:https://www.cnblogs.com/jpfss/p/11262231.html
Copyright © 2011-2022 走看看