zoukankan      html  css  js  c++  java
  • R in action读书笔记(12)第九章 方差分析

    第九章方差分析

    9.2 ANOVA 模型拟合

    9.2.1 aov()函数

    aov(formula, data = NULL, projections =FALSE, qr = TRUE,

    contrasts = NULL, ...)

    9.2.2 表达式中各项的顺序

    y ~ A + B + A:B

    有三种类型的方法可以分解等式右边各效应对y所解释的方差。R默认类型I

    类型I(序贯型)

    效应根据表达式中先出现的效应做调整。A不做调整,B根据A调整,A:B交互项根据A和

    B调整。

    类型II(分层型)

    效应根据同水平或低水平的效应做调整。A根据B调整,B依据A调整,A:B交互项同时根

    据A和B调整。

    类型III(边界型)

    每个效应根据模型其他各效应做相应调整。A根据B和A:B做调整,A:B交互项根据A和B

    调整。

    9.3 单因素方差分析

    > library(multcomp)

    > attach(cholesterol)

    > table(trt) #各组样本大小

    trt

    1time 2times4times drugD drugE

    10 10 10 10 10

    > aggregate(response,by=list(trt),FUN=mean)#各组均值

    Group.1 x

    1 1time 5.78197

    2 2times 9.22497

    3 4times 12.37478

    4 drugD 15.36117

    5 drugE 20.94752

    > aggregate(response,by=list(trt),FUN=sd) #各组标准差

    Group.1 x

    1 1time 2.878113

    2 2times 3.483054

    3 4times 2.923119

    4 drugD 3.454636

    5 drugE 3.345003

    > fit<-aov(response~trt)

    > summary(fit) #检验组间差异(ANOVA)

    Df SumSq Mean Sq F value Pr(>F)

    trt 41351.4 337.8 32.43 9.82e-13 ***

    Residuals 45 468.8 10.4

    ---

    Signif. codes:

    0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

    > library(gplots)

    > plotmeans(response~trt,xlab="treatment",ylab="response",main="meanplot with 95% CI")

    #绘制各组均值及其置信区间的图形

    > detach(cholesterol)

    9.3.1 多重比较

    TukeyHSD()函数提供了对各组均值差异的成对检验。但要注意TukeyHSD()函数与HH包存在兼容性问题:若载入HH包,TukeyHSD()函数将会失效。使用detach("package::HH")将它从搜寻路径中删除,然后再调用TukeyHSD()

    > detach("package:HH", unload=TRUE)

    > TukeyHSD(fit)

    Tukey multiplecomparisons of means

    95% family-wise confidence level

    Fit: aov(formula = response ~ trt)

    $trt

    diff lwr upr p adj

    2times-1time 3.44300 -0.6582817 7.5442820.1380949

    4times-1time 6.59281 2.4915283 10.6940920.0003542

    drugD-1time 9.57920 5.4779183 13.680482 0.0000003

    drugE-1time 15.16555 11.0642683 19.266832 0.0000000

    4times-2times 3.14981 -0.9514717 7.2510920.2050382

    drugD-2times 6.13620 2.0349183 10.2374820.0009611

    drugE-2times 11.72255 7.6212683 15.8238320.0000000

    drugD-4times 2.98639 -1.1148917 7.0876720.2512446

    drugE-4times 8.57274 4.4714583 12.6740220.0000037

    drugE-drugD 5.58635 1.4850683 9.687632 0.0030633

    > par(las=2)

    > par(mar=c(5,8,4,2))

    > plot(TukeyHSD(fit))

    multcomp包中的glht()函数提供了多重均值比较更为全面的方法,既适用于线性模型,也适用于广义线性模型.

    > library(multcomp)

    > par(mar=c(5,4,6,2))

    > tuk<-glht(fit,linfct=mcp(trt="Tukey"))

    > plot(cld(tuk,level=.5),col="lightgrey")

    9.3.2 评估检验的假设条件

    > library(car)

    > qqPlot(lm(response~trt,data=cholesterol),simulate=TRUE,main="Q-Qplot",labels=FALSE)

    Bartlett检验:

    > bartlett.test(response~trt,data=cholesterol)

    Bartlett test ofhomogeneity of variances

    data: response by trt

    Bartlett's K-squared = 0.5797, df = 4,

    p-value = 0.9653

    方差齐性分析对离群点非常敏感。可利用car包中的outlierTest()函数来检测离群点:

    > library(car)

    > outlierTest(fit)

    No Studentized residuals withBonferonni p < 0.05

    Largest |rstudent|:

    rstudent unadjusted p-value Bonferonni p

    19 2.251149 0.029422 NA

    9.4 单因素协方差分析

    单因素协方差分析(ANCOVA)扩展了单因素方差分析(ANOVA),包含一个或多个定量的

    协变量

    > data(litter,package="multcomp")

    > attach(litter)

    > table(dose)

    dose

    0 5 50 500

    20 19 18 17

    > aggregate(weight,by=list(dose),FUN=mean)

    Group.1 x

    1 0 32.30850

    2 5 29.30842

    3 50 29.86611

    4 500 29.64647

    > fit<-aov(weight~gesttime+dose)

    > summary(fit)

    Df Sum Sq Mean Sq Fvalue Pr(>F)

    gesttime 1 134.3 134.30 8.049 0.00597 **

    dose 3 137.1 45.71 2.739 0.04988 *

    Residuals 69 1151.3 16.69

    ---

    Signif. codes:

    0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’0.1 ‘ ’ 1

    由于使用了协变量,要获取调整的组均值——即去除协变量效应后的组均值。可使

    用effects包中的effects()函数来计算调整的均值:

    > library(effects)

    > effect("dose",fit)

    dose effect

    dose

    0 5 50 500

    32.35367 28.87672 30.56614 29.33460

    对用户定义的对照的多重比较

    > library(multcomp)

    > contrast<-rbind("no drugvs. drug"=c(3,-1,-1,-1))

    > summary(glht(fit,linfct=mcp(dose=contrast)))

    Simultaneous Tests for General LinearHypotheses

    Multiple Comparisons of Means: User-definedContrasts

    Fit: aov(formula = weight ~ gesttime +dose)

    Linear Hypotheses:

    Estimate Std. Error tvalue

    no drug vs. drug == 0 8.284 3.209 2.581

    Pr(>|t|)

    no drug vs. drug == 0 0.012 *

    ---

    Signif. codes:

    0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’0.1 ‘ ’ 1

    (Adjusted p values reported --single-step method)

    9.4.1 评估检验的假设条件

    检验回归斜率的同质性

    > library(multcomp)

    > fit2<-aov(weight~gesttime*dose,data=litter)

    > summary(fit2)

    Df Sum Sq Mean Sq F value Pr(>F)

    gesttime 1 134.3 134.30 8.289 0.00537 **

    dose 3 137.1 45.71 2.821 0.04556 *

    gesttime:dose 3 81.9 27.29 1.684 0.17889

    Residuals 66 1069.4 16.20

    ---

    Signif. codes:

    0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’0.1 ‘ ’ 1

    9.4.2 结果可视化

    HH包中的ancova()函数可以绘制因变量、协变量和因子之间的关系图。

    > library(HH)

    > ancova(weight~gesttime+dose,data=litter)

    Analysis of Variance Table

    Response: weight

    Df Sum Sq Mean Sq F value Pr(>F)

    gesttime 1 134.30 134.304 8.0493 0.005971 **

    dose 3 137.12 45.708 2.7394 0.049883 *

    Residuals 69 1151.27 16.685

    ---

    Signif. codes:

    0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’0.1 ‘ ’ 1

    9.5 双因素方差分析

    双因素ANOVA

    > attach(ToothGrowth)

    > table(supp,dose)

    dose

    supp 0.5 1 2

    OJ 10 10 10

    VC 10 10 10

    > aggregate(len,by=list(supp,dose),FUN=mean)

    Group.1 Group.2 x

    1 OJ 0.5 13.23

    2 VC 0.5 7.98

    3 OJ 1.0 22.70

    4 VC 1.0 16.77

    5 OJ 2.0 26.06

    6 VC 2.0 26.14

    > aggregate(len,by=list(supp,dose),FUN=sd)

    Group.1 Group.2 x

    1 OJ 0.5 4.459709

    2 VC 0.5 2.746634

    3 OJ 1.0 3.910953

    4 VC 1.0 2.515309

    5 OJ 2.0 2.655058

    6 VC 2.0 4.797731

    > fit<-aov(len~supp*dose)

    > summary(fit)

    Df Sum Sq Mean Sq F value Pr(>F)

    supp 1 205.3 205.3 12.317 0.000894 ***

    dose 1 2224.3 2224.3 133.415 < 2e-16 ***

    supp:dose 1 88.9 88.9 5.333 0.024631 *

    Residuals 56 933.6 16.7

    ---

    Signif. codes:

    0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’0.1 ‘ ’ 1

    table语句的预处理表明该设计是均衡设计(各设计单元中样本大小都相同),aggregate

    语句处理可获得各单元的均值和标准差。用summary()函数得到方差分析表,可以看到主效应

    (supp和dose)和交互效应都非常显著。有多种方式对结果进行可视化处理。interaction.plot()函数来展示双因素方差分析的交互效应。

    > interaction.plot(dose,supp,len,type="b",col=c("red","blue"),pch=c(16,18),main="interactionbetween dose and supplement type")

    还可以用gplots包中的plotmeans()函数来展示交互效应。

    > library(gplots)

    > plotmeans(len~interaction(supp,dose,sep=""),connect=list(c(1,3,5),c(2,4,6)),col=c("red","darkgreen"),main="interactionplot with 95%CIs",xlab="treatment and dose combination")

    用HH包中的interaction2wt()函数来可视化结果,图形对任意顺序的因子

    设计的主效应和交互效应都会进行展示

    > library(HH)

    > interaction2wt(len~supp*dose)

    9.6 重复测量方差分析

    含一个组间因子和一个组内因子的重复测量方差分析

    w1b1<-subset(CO2,Treatment=="chilled")

    w1b1

    fit<-aov(uptake~conc*Type+Error(Plant/(conc)),w1b1)

    summary(fit)

    par(las=2)

    par(mar=c(10,4,4,2))

    with(w1b1,interaction.plot(conc,Type,uptake,type="b",col=c("red","blue"),pch=c(16,18),main="InteractionPlot for Plant Type and Concentration"))

    boxplot(uptake~Type*conc,data=w1b1,col=c("gold","green"),

    main="Chilled Quebec andMississippi Plants",

    ylab="Carbon dioxide uptake rateumol/m^2 sec")

    9.7 多元方差分析

    当因变量(结果变量)不止一个时,可用多元方差分析(MANOVA)对它们同时进行分析。

    library(MASS)

    head(UScereal)

    attach(UScereal)

    y<-cbind(calories,fat,sugars)

    aggregate(y,by=list(shelf),FUN=mean)

    cov(y)

    fit<-manova(y~shelf)

    summary(fit)

    summary.aov(fit)

    9.7.1 评估假设检验

    单因素多元方差分析有两个前提假设,一个是多元正态性,一个是方差—协方差矩阵同质性。

    理论补充

    若有一个p*1的多元正态随机向量x,均值为μ,协方差矩阵为Σ,那么x与μ的马氏距离

    的平方服从自由度为p的卡方分布。Q-Q图展示卡方分布的分位数,横纵坐标分别是样本量与

    马氏距离平方值。如果点全部落在斜率为1、截距项为0的直线上,则表明数据服从多元正态

    分布。

    检验多元正态性

    > center<-colMeans(y)

    > n<-nrow(y)

    > p<-ncol(y)

    > cov<-cov(y)

    > d<-mahalanobis(y,center,cov)

    > coord<-qqplot(qchisq(ppoints(n),df=p),d,main="q-qplot assessing multivariate normality",ylab="mahalanobis d2")

    > identify(coord$x,coord$y,labels=row.names(UScereal))

    9.7.2 稳健多元方差分析

    如果多元正态性或者方差—协方差均值假设都不满足,又或者你担心多元离群点,那么可以

    考虑用稳健或非参数版本的MANOVA检验。稳健单因素MANOVA可通过rrcov包中的

    Wilks.test()函数实现。vegan包中的adonis()函数则提供了非参数MANOVA的等同形式。

    > library(rrcov)

    > Wilks.test(y,shelf,method="mcd")

    9.8 用回归来做ANOVA

    > library(multcomp)

    > levels(cholesterol$trt)

    [1] "1time" "2times" "4times""drugD"

    [5] "drugE"

    > fit.aov<-aov(response~trt,data=cholesterol)

    > summary(fit.aov)

    Df Sum Sq Mean Sq F value Pr(>F)

    trt 4 1351.4 337.8 32.43 9.82e-13 ***

    Residuals 45 468.8 10.4

    ---

    Signif. codes:

    0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’0.1 ‘ ’ 1

    用lm()函数拟合同样的模型

    > fit.lm<-lm(response~trt,data=cholesterol)

    > summary(fit.lm)

    Call:

    lm(formula = response ~ trt, data =cholesterol)

    Residuals:

    Min 1Q Median 3Q Max

    -6.5418 -1.9672 -0.0016 1.8901 6.6008

    Coefficients:

    Estimate Std. Error t valuePr(>|t|)

    (Intercept) 5.782 1.021 5.665 9.78e-07 ***

    trt2times 3.443 1.443 2.385 0.0213 *

    trt4times 6.593 1.443 4.568 3.82e-05 ***

    trtdrugD 9.579 1.443 6.637 3.53e-08 ***

    trtdrugE 15.166 1.443 10.507 1.08e-13 ***

    ---

    Signif. codes:

    0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’0.1 ‘ ’ 1

    Residual standard error: 3.227 on 45degrees of freedom

    Multiple R-squared: 0.7425, AdjustedR-squared: 0.7196

    F-statistic: 32.43 on 4 and 45DF, p-value: 9.819e-13


  • 相关阅读:
    C#24种设计模式汇总
    传智播客C++视频学习笔记(5)
    传智播客C++视频学习笔记(3)
    传智播客C++视频学习笔记(1)
    Learning hard 网络编程
    Learning hard 学习笔记
    男人和女人 访问者模式
    其实你不懂老板的心 解释器模式
    项目多也别傻做 享元模式
    git常用命令
  • 原文地址:https://www.cnblogs.com/jpld/p/4459158.html
Copyright © 2011-2022 走看看