zoukankan      html  css  js  c++  java
  • GOICE项目初探

           GOICE项目初探

            在图像拼接方面,市面上能够找到的软件中,要数MS的ICE效果、鲁棒性最好,而且界面也很美观。应该说有很多值得学习的地方,虽然这个项目不开源,但是利用现有的资料,也可以实现很多具体的拼接工作。
            
            基于现有的有限资源,主要是以opencv自己提供的stitch_detail进行修改和封包,基于ribbon编写界面,我也尝试实现了GOICE项目,实现全景图片的拼接、横向视频的拼接,如果下一步有时间的话再将双目实时拼接从以前的代码中移植过来。
     
    这里简单地将一些技术要点进行解析,欢迎批评指正和合作交流!
    一、对现有算法进行重新封装
       opencv原本的算法主要包含在Stitching Pipeline中,结构相对比较复杂,具体可以查看opencv refman
         对算法进行重构后整理如下:
       
     //使用变量
        Ptr<FeaturesFinder> finder;
        Mat full_img, img;
        int num_images = m_ImageList.size();
        vector<ImageFeatures> features(num_images);
        vector<Mat> images(num_images);
        vector<cv::Size> full_img_sizes(num_images);
        double seam_work_aspect = 1;
        vector<MatchesInfo> pairwise_matches;
        BestOf2NearestMatcher matcher(try_gpu, match_conf);
        vector<int> indices;
        vector<Mat> img_subset;
        vector<cv::Size> full_img_sizes_subset;
        HomographyBasedEstimator estimator;
        vector<CameraParams> cameras;
        vector<cv::Point> corners(num_images);
        vector<Mat> masks_warped(num_images);
        vector<Mat> images_warped(num_images);
        vector<cv::Size> sizes(num_images);
        vector<Mat> masks(num_images);
        Mat img_warped, img_warped_s;
        Mat dilated_mask, seam_mask, mask, mask_warped;
        Ptr<Blender> blender;
        double compose_work_aspect = 1;
     
        //拼接开始
        if (features_type == "surf")
            finder = new SurfFeaturesFinder();
        else
            finder = new OrbFeaturesFinder();
        
        //寻找特征点
        m_progress.SetPos(20);
        for (int i = 0; i < num_images; ++i)
        {
        
            full_img = m_ImageList[i].clone();
            full_img_sizes[i] = full_img.size();//读到的是大小
            if (full_img.empty())
            {
                MessageBox("图片读取错误,请确认后重新尝试!");
                return;
            }
            if (work_megapix < 0)
            {
                img = full_img;
                work_scale = 1;
                is_work_scale_set = true;
            }else{
                if (!is_work_scale_set)
                {
                    work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));
                    is_work_scale_set = true;
                }
                resize(full_img, img, cv::Size(), work_scale, work_scale);
            }
            if (!is_seam_scale_set)
            {
                seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
                seam_work_aspect = seam_scale / work_scale;
                is_seam_scale_set = true;
            }
            (*finder)(img, features[i]);
            features[i].img_idx = i;
            resize(full_img, img, cv::Size(), seam_scale, seam_scale);
            images[i] = img.clone();
        }
     
        finder->collectGarbage();
        full_img.release();
        img.release();
        //进行匹配
        m_progress.SetPos(30);
        matcher(features, pairwise_matches);
        matcher.collectGarbage();
        indices  = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
        for (size_t i = 0; i < indices.size(); ++i)
        {
            img_subset.push_back(images[indices[i]]);
            full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
        }
        m_progress.SetPos(40);
        images = img_subset;
     
        //判断图片是否足够
        num_images = static_cast<int>(img_subset.size());
        if (num_images < 2)
        {
            MessageBox("图片特征太少,尝试添加更多图片!");
            return;
        }
        estimator(features, pairwise_matches, cameras);
        for (size_t i = 0; i < cameras.size(); ++i)
        {
            Mat R;
            cameras[i].R.convertTo(R, CV_32F);
            cameras[i].R = R;
            //LOGLN("Initial intrinsics #" << indices[i]+1 << ":
    " << cameras[i].K());
        }
        //开始对准
        m_progress.SetPos(50);
        Ptr<detail::BundleAdjusterBase> adjuster;
        if (ba_cost_func == "reproj") adjuster = new detail::BundleAdjusterReproj();
        else 
        adjuster = new detail::BundleAdjusterRay();
        
        adjuster->setConfThresh(conf_thresh);
        Mat_<uchar> refine_mask = Mat::zeros(3, 3, CV_8U);
        if (ba_refine_mask[0] == 'x') refine_mask(0,0) = 1;
        if (ba_refine_mask[1] == 'x') refine_mask(0,1) = 1;
        if (ba_refine_mask[2] == 'x') refine_mask(0,2) = 1;
        if (ba_refine_mask[3] == 'x') refine_mask(1,1) = 1;
        if (ba_refine_mask[4] == 'x') refine_mask(1,2) = 1;
        adjuster->setRefinementMask(refine_mask);
        (*adjuster)(features, pairwise_matches, cameras);
     
        // Find median focal length
        vector<double> focals;
        for (size_t i = 0; i < cameras.size(); ++i)
            focals.push_back(cameras[i].focal);
        sort(focals.begin(), focals.end());
        float warped_image_scale;
        if (focals.size() % 2 == 1)
            warped_image_scale = static_cast<float>(focals[focals.size() / 2]);
        else
            warped_image_scale = static_cast<float>(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;
        //开始融合
        m_progress.SetPos(60);
        if (do_wave_correct)
        {
            vector<Mat> rmats;
            for (size_t i = 0; i < cameras.size(); ++i)
                rmats.push_back(cameras[i].R);
            waveCorrect(rmats, wave_correct);
            for (size_t i = 0; i < cameras.size(); ++i)
                cameras[i].R = rmats[i];
        }
     
        //最后修正
        m_progress.SetPos(70);
        // Preapre images masks
        for (int i = 0; i < num_images; ++i)
        {
            masks[i].create(images[i].size(), CV_8U);
            masks[i].setTo(Scalar::all(255));
        }
        Ptr<WarperCreator> warper_creator;
        {
            if (warp_type == "plane") warper_creator = new cv::PlaneWarper();
            else if (warp_type == "cylindrical") warper_creator = new cv::CylindricalWarper();
            else if (warp_type == "spherical") warper_creator = new cv::SphericalWarper();
            else if (warp_type == "fisheye") warper_creator = new cv::FisheyeWarper();
            else if (warp_type == "stereographic") warper_creator = new cv::StereographicWarper();
            else if (warp_type == "compressedPlaneA2B1") warper_creator = new cv::CompressedRectilinearWarper(2, 1);
            else if (warp_type == "compressedPlaneA1.5B1") warper_creator = new cv::CompressedRectilinearWarper(1.5, 1);
            else if (warp_type == "compressedPlanePortraitA2B1") warper_creator = new cv::CompressedRectilinearPortraitWarper(2, 1);
            else if (warp_type == "compressedPlanePortraitA1.5B1") warper_creator = new cv::CompressedRectilinearPortraitWarper(1.5, 1);
            else if (warp_type == "paniniA2B1") warper_creator = new cv::PaniniWarper(2, 1);
            else if (warp_type == "paniniA1.5B1") warper_creator = new cv::PaniniWarper(1.5, 1);
            else if (warp_type == "paniniPortraitA2B1") warper_creator = new cv::PaniniPortraitWarper(2, 1);
            else if (warp_type == "paniniPortraitA1.5B1") warper_creator = new cv::PaniniPortraitWarper(1.5, 1);
            else if (warp_type == "mercator") warper_creator = new cv::MercatorWarper();
            else if (warp_type == "transverseMercator") warper_creator = new cv::TransverseMercatorWarper();
        }
        if (warper_creator.empty())
        {
            cout << "Can't create the following warper '" << warp_type << "'
    ";
            return;}
     
        Ptr<RotationWarper> warper = warper_creator->create(static_cast<float>(warped_image_scale * seam_work_aspect));
     
        for (int i = 0; i < num_images; ++i)
        {
            Mat_<float> K;
            cameras[i].K().convertTo(K, CV_32F);
            float swa = (float)seam_work_aspect;
            K(0,0) *= swa; K(0,2) *= swa;
            K(1,1) *= swa; K(1,2) *= swa;
     
            corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);
            sizes[i] = images_warped[i].size();
     
            warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
        }
        vector<Mat> images_warped_f(num_images);
        for (int i = 0; i < num_images; ++i)
            images_warped[i].convertTo(images_warped_f[i], CV_32F);
        Ptr<ExposureCompensator> compensator = ExposureCompensator::createDefault(expos_comp_type);
        compensator->feed(corners, images_warped, masks_warped);
        //接缝修正
        m_progress.SetPos(80);
        Ptr<SeamFinder> seam_finder;
        if (seam_find_type == "no")
            seam_finder = new detail::NoSeamFinder();
        else if (seam_find_type == "voronoi")
            seam_finder = new detail::VoronoiSeamFinder();
        else if (seam_find_type == "gc_color")
            seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR);
        else if (seam_find_type == "gc_colorgrad")
            seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR_GRAD);
        else if (seam_find_type == "dp_color")
            seam_finder = new detail::DpSeamFinder(DpSeamFinder::COLOR);
        else if (seam_find_type == "dp_colorgrad")
            seam_finder = new detail::DpSeamFinder(DpSeamFinder::COLOR_GRAD);
        if (seam_finder.empty())
        {
            MessageBox("无法对图像进行缝隙融合");
            return;
        }
        //输出最后结果
        m_progress.SetPos(90);
        seam_finder->find(images_warped_f, corners, masks_warped);
        // Release unused memory
        images.clear();
        images_warped.clear();
        images_warped_f.clear();
        masks.clear();
     
        for (int img_idx = 0; img_idx < num_images; ++img_idx)
        {
            // Read image and resize it if necessary
            full_img = m_ImageList[img_idx];
            if (!is_compose_scale_set)
            {
                if (compose_megapix > 0)
                    compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area()));
                is_compose_scale_set = true;
                // Compute relative scales
                compose_work_aspect = compose_scale / work_scale;
                // Update warped image scale
                warped_image_scale *= static_cast<float>(compose_work_aspect);
                warper = warper_creator->create(warped_image_scale);
                // Update corners and sizes
                for (int i = 0; i < num_images; ++i)
                {
                    // Update intrinsics
                    cameras[i].focal *= compose_work_aspect;
                    cameras[i].ppx *= compose_work_aspect;
                    cameras[i].ppy *= compose_work_aspect;
     
                    // Update corner and size
                    cv::Size sz = full_img_sizes[i];
                    if (std::abs(compose_scale - 1) > 1e-1)
                    {
                        sz.width = cvRound(full_img_sizes[i].width * compose_scale);
                        sz.height = cvRound(full_img_sizes[i].height * compose_scale);
                    }
                    Mat K;
                    cameras[i].K().convertTo(K, CV_32F);
                    cv::Rect roi = warper->warpRoi(sz, K, cameras[i].R);
                    corners[i] = roi.tl();
                    sizes[i] = roi.size();
                }
            }
            if (abs(compose_scale - 1) > 1e-1)
                resize(full_img, img, cv::Size(), compose_scale, compose_scale);
            else
                img = full_img;
            full_img.release();
            cv::Size img_size = img.size();
     
            Mat K;
            cameras[img_idx].K().convertTo(K, CV_32F);
     
            // Warp the current image
            warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);
     
            // Warp the current image mask
            mask.create(img_size, CV_8U);
            mask.setTo(Scalar::all(255));
            warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);
     
            // Compensate exposure
            compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);
     
            img_warped.convertTo(img_warped_s, CV_16S);
            img_warped.release();
            img.release();
            mask.release();
     
            dilate(masks_warped[img_idx], dilated_mask, Mat());
            resize(dilated_mask, seam_mask, mask_warped.size());
            mask_warped = seam_mask & mask_warped;
     
            if (blender.empty())
            {
                blender = Blender::createDefault(blend_type, try_gpu);
                cv::Size dst_sz = resultRoi(corners, sizes).size();
                float blend_width = sqrt(static_cast<float>(dst_sz.area())) * blend_strength / 100.f;
                if (blend_width < 1.f)
                    blender = Blender::createDefault(Blender::NO, try_gpu);
                else if (blend_type == Blender::MULTI_BAND)
                {
                    MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(static_cast<Blender*>(blender));
                    mb->setNumBands(static_cast<int>(ceil(log(blend_width)/log(2.)) - 1.));
                    LOGLN("Multi-band blender, number of bands: " << mb->numBands());
                }
                else if (blend_type == Blender::FEATHER)
                {
                    FeatherBlender* fb = dynamic_cast<FeatherBlender*>(static_cast<Blender*>(blender));
                    fb->setSharpness(1.f/blend_width);
                    LOGLN("Feather blender, sharpness: " << fb->sharpness());
                }
                blender->prepare(corners, sizes);
            }
     
            // Blend the current image
            blender->feed(img_warped_s, mask_warped, corners[img_idx]);
        }
        Mat result, result_mask;
        blender->blend(result, result_mask);
        m_progress.SetPos(100);
        AfxMessageBox("拼接成功!");
        m_progress.ShowWindow(false);
        m_progress.SetPos(0);
        //格式转换
        result.convertTo(result,CV_8UC3);
        showImage(result,IDC_PBDST);
        //保存结果
        m_matResult = result.clone();
          基本上没有修改代码的结构,但是做了几个改变
          1、原来的算法既读取文件名,又保存mat变量,我这里将其统一成为使用vector<Mat>来进行保存;
          2、将LOGLN的部分以messagebox的方式显示出来,并且进行错误控制;
          3、添加适当注释,并且在合适的地方控制进度条显示。
    二、主要界面编写技巧
           主要界面使用了Ribbon的方法,结合使用IconWorkshop生成图标。如何生成这样的图片在我的博客中有专门介绍。
           内容方面,使用了基于listctrl的缩略图的显示,具体参考我的另一篇blog--"图像处理界面--缩略图的显示"
    三、视频拼接的处理方法
           相比较图像拼接,这次添加了一个“横向视频”的拼接。其实算法原理是比较朴素的(当然这里考虑的是比较简单的情况)。就是对于精心拍摄的视频,那么只要每隔一段时间取一个图片,然后把这些图片进行拼接,就能够得到视频的全景图片。
    void CMFCApplication1View::OnButtonOpenmov()
    {
        CString pathName; 
        CString szFilters= _T("*(*.*)|*.*|avi(*.avi)|*.avi|mp4(*.mp4)|*.mp4||");
        CFileDialog dlg(TRUE,NULL,NULL,NULL,szFilters,this);
        VideoCapture capture;
        Mat frame;
        int iFrameCount = 0;
        int iFram = 0;
        if(dlg.DoModal()==IDOK){
                //获得路径
                pathName=dlg.GetPathName(); 
                //设置窗体
                m_ListThumbnail.ShowWindow(false);
                m_imagerect.ShowWindow(false);
                m_imagedst.ShowWindow(true);
                m_progress.ShowWindow(false);
                m_msg.ShowWindow(false);
                //打开视频并且抽取图片
                capture.open((string)pathName);
                if (!capture.isOpened())
                {
                    MessageBox("视频打开错误!");
                    return;
                }
                m_VectorMovImageNames.clear();
                m_MovImageList.clear();
                char cbuf[100];
                while (capture.read(frame))
                {
                    //每隔50帧取一图
                    if (0 == iFram%50)
                    {
                        m_MovImageList.push_back(frame.clone());
                    }
                    showImage(frame,IDC_PBDST);
                    iFram = iFram +1;
                }
        }
    }
    四、反思和小结
    1)虽然现在已经对opencv的算法进行了集成,但是由于算法原理还是繁琐复杂的,下一步要结合对更复杂问题的进一步研究吃透算法;
    2)使用ribbon进行程序设计现在已经比较熟悉了。能够认识到工具擅长解决的问题、能够认识到工具不好解决的问题,能够快速实现,才算是掌握;
     



  • 相关阅读:
    CentOS Linux 7 安装教程
    计算机网络概念
    计算机操作系统概念简介
    基础-计算机及操作系统和应用程序的概念
    Spring mvc注解说明
    kaptcha Spring 整合
    Spring常用注解
    Spring bean的自动装配属性
    HQL(Hibernate Query language)语言
    JDBC、Hibernate、Java类型对照表
  • 原文地址:https://www.cnblogs.com/jsxyhelu/p/5493360.html
Copyright © 2011-2022 走看看